Skip to main content
Log in

Stochastic-time description of transitions in unstable and multistable systems

Стохастическое временное описание нереходов в нестабильных и мультиустойчивых системах

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

The decay of a macroscopic unstable state implies anomalous fluctuations in the amplitudes of the decaying parameters, which are the transient extension of the stationary divergences at the critical point of phase transitions. These decays are best studied, theoretically and experimentally, via the stochastic times of intersection of a given threshold. Besides yielding a closed solvable set of moment equations, the stochastic time approach permits to discriminate the transient fluctuations due to the spread in the initial conditions from those arising from noise along the path. These latter ones limit the validity of the so-called asymptotic approximation. Here we develop a detailed theory including scaling laws and then compare it with experimental measurements in order to show the limit of previous approaches.

Riassunto

Il decadimento di uno stato macroscopico instabile produce fluttuazioni anomale nell’ampiezza del parametro in esame, che sono il corrispettivo in transitorio delle fluttuazioni stazionarie al punto critico di una transizione di fase. Tali decadimenti sono meglio studiati, sia teoricamente che sperimentalmente, scegliendo come parametro significativo il tempo stocastico di attraversamento di una soglia prefissata. Oltre a fornire un insieme chiuso di equazioni esattamente solubili per i momenti, questa scelta permette di discriminare le fluttuazioni dovute ad un’indeterminazione nelle condizioni iniziali da quelle prodotte dal rumore lungo la traiettoria. L’influenza di queste ultime limita la validità della cosiddetta approssimazione asintotica. In questo lavoro si sviluppa una teoria dettagliata, che include leggi di scala, e la si confronta con misure sperimentali allo scopo di mostrare i limiti di precedenti metodi.

Резюме

Распад макроскопического нестабильного состояния подразумевает аномальные флуктуации в амплитудах параметров распада, которые представляют переходный процесс для стационарных флуктуаций в критических точках фазовых переходов. Такие распады хорошо изучены теоретически и экспериментально, с помошью стохастических времен точки пересечения для заданного порога. Помимо получения замкнутой решаемой системы уравнений для моментов, стохастический временной подход позволяет дискриминировать переходные флуктуации, обусловленные неопределенностью начальных условий, от флуктуаций, возникающих из-за шума вдоль траектории. Влияние последних флуктуаций ограничивает применимость так называемого асимптотического приближения. Здесь мы развиваем подробную теорию, включаюшую законы подобия, а затем проводим сравнение с экспериментальными измерениями, чтобы показать ограничения предыдущих подходов.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. a) Proceedings of the 1978 Oji Seminar on Nonlinear Nonequilibrium Statistical Mechanics, Kyoto, Prog. Theor. Phys. Suppl.,64 (1978).b) Order and Fluctuations in Equilibrium and Nonequilibrium Statistical Mechanics, edited byG. Nicolis, G. Dewel andJ. W. Turner (New York, N. Y., 1981).c) Dynamical Critical Phenomena, edited byC. P. Enz (New York, N. Y., 1979).d) Pattern Formation by Dynamic Systems and Pattern Recognition, edited byH. Haken (New York, N. Y., 1979).

  2. M. Dubois andP. Bergè:Dynamical Critical Phenomena, edited byC. P. Enz (New York, N. Y., 1979);J. P. Gollub:Pattern Formation by Dynamic Systems and Pattern Recognition, edited byH. Haken (New York, N. Y., 1979).

  3. K. Tomita:Proceedings of the 1978 Oji Seminar on Nonlinear Nonequilibrium Statistical Mechanics, Kyoto, Prog. Theor. Phys. Suppl.,64, 452 (1978).

    Google Scholar 

  4. F. T. Arecchi:Order and Fluctuations in Equilibrium and Nonequilibrium Statistical Mechanics, edited byG. Nicolis, G. Dewel andJ. W. Turner (New York, N. Y., 1981), p. 107.

  5. F. T. Arecchi, V. Degiorgio andB. Querzola:Phys. Rev. Lett.,19, 1168 (1967).

    Article  ADS  Google Scholar 

  6. F. T. Arecchi andV. Degiorgio:Phys. Rev. A,3, 1108 (1971).

    Article  ADS  Google Scholar 

  7. F. T. Arecchi andA. Politi:Phys. Rev. Lett.,45, 1219 (1980).

    Article  ADS  Google Scholar 

  8. H. Risken andH. D. Vollmer:Z. Phys.,204, 270 (1967).

    Article  ADS  Google Scholar 

  9. N. G. Van Kampen:J. Stat. Phys.,17, 71 (1977).

    Article  ADS  Google Scholar 

  10. R. Kubo:Synergetics, edited byH. Haken (Leipzig, 1973).

  11. M Suzuki:J. Stat. Phys. 16, 477 (1977).

    Article  ADS  Google Scholar 

  12. F. Haake:Phys. Rev. Lett.,41, 1685 (1978).

    Article  ADS  Google Scholar 

  13. F. De Pasquale andP. Tombesi:Phys. Lett. A,72, 7 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  14. F. De Pasquale, P. Tartaglia andP. Tombesi:Z. Phys. B,43, 361 (1981).

    Article  ADS  Google Scholar 

  15. R. B. Griffiths, C. Y. Weng andJ. S. Langer:Phys. Rev.,149, 301 (1966).

    Article  ADS  Google Scholar 

  16. K. Lindenberg andV. Seshadri:J. Chem. Phys.,71, 4075 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  17. M. Mangel:Physica A (Utrecht),97, 616 (1979).

    MathSciNet  ADS  Google Scholar 

  18. F. Haake, J. W. Haus andR. Glauber:Phys. Rev. A,23, 3255 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  19. B. Caroli, C. Caroli andB. Roulet:J. Stat. Phys.,21, 415 (1979).

    Article  ADS  Google Scholar 

  20. R. L. Stratonovich:Topics in the Theory of Random Noise, Vol.1 (New York, N. Y., 1963).

  21. We recall that, for the validity of eq. (2.8),Q(z, t) must go to 0 (t→∞) faster thant −m. There are pathological physical situations in which this condition does not hold.

  22. A tentative description of optical tristability was formulated byM. Kitano, J. Yabuzaki andT. Ogawa:Phys. Rev. Lett.,46, 926, (1981), with reference to a three-level system, having degenerate 2-level ground state (1 and 2) and a single excited state (3). States 1 and 2 are coupled, respectively, by right and left polarized radiation to level 3, and selection rules forbid in both cases the complementary coupling. An injection of equal amounts of right and left polarized resonant light induces the system to display mono-, bi- and tristable regions. The main drawback of this model is that it neglects the coherence between levels 1 and 2, always present in physical systems (e.g. alkali atoms). This will be shown in a successive work.

    Article  MathSciNet  ADS  Google Scholar 

  23. The same result was obtained byB. Caroli, C. Caroli andB. Roulet:Physica A (Utrecht),101, 581 (1980), following a WKB approach. Our derivation results to be much simpler.

    MathSciNet  ADS  Google Scholar 

  24. Handbook of Mathematical Functions, edited byM. Abramowitz andI. A. Stegun (New York, N. Y., 1972).

  25. A. Schenzle andH. Brand:Phys. Rev. A,20, 1628 (1979).

    Article  ADS  MATH  Google Scholar 

  26. W. Feller:An Introduction to Probability Theory and its Applications, Vol.2 (New York, N. Y., 1966).

  27. M. Mangel:Phys. Rev. A,24, 3226 (1981).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. F. T. Arecchi andA. Politi:Lett. Nuovo Cimento,27, 486 (1980).

    Article  MathSciNet  Google Scholar 

  29. M. A. Anisimov, E. E. Gorodetskii andV. M. Zaprudskii:Sov. Phys. Usp.,24, 57 (1981).

    Article  ADS  Google Scholar 

  30. Equation (4.13) is the only reasonable normalization for\(T_{ab}^ - \). We do not agree withMangel (17), who does not divide the integral in eq. (4.13) by\(P_{ab}^ - \).

    MathSciNet  ADS  Google Scholar 

  31. H. A. Kramers:Physica (Utrecht),7, 284 (1940).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. R. Gilmore:Phys. Rev. A,20, 2510 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  33. T. Kawakubo andS. Kabashima:J. Phys. Soc. Jpn.,37, 1199 (1974).

    Article  ADS  Google Scholar 

  34. F. T. Arecchi, A. Politi andL. Ulivi:Phys. Lett. A,87, 333 (1982).

    Article  ADS  MATH  Google Scholar 

  35. F. T. Arecchi andA. Politi:Phys. Lett. A,77, 312 (1980).

    Article  ADS  Google Scholar 

  36. J. S. Langer: inFluctuations, Instabilities and Phase Transitions, edited byT. Riste (New York, N. Y., 1975).

  37. K. Binder: inFluctuations, Instabilities and Phase Transitions edited byT. Riste (New York, N. Y., 1975).

  38. P. Grossmann andS. Thomae:J. Stat. Phys., to appear.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work partly supported by contract CNR-INO 1981.

Переведено редакцией.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arecchi, F.T., Politi, A. & Ulivi, L. Stochastic-time description of transitions in unstable and multistable systems. Nuov Cim B 71, 119–154 (1982). https://doi.org/10.1007/BF02721698

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02721698

Navigation