Skip to main content
Log in

Calculation of radiative transfer in nongray gas using a narrow-band model and Monte Carlo simulation

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Abstract

Radiation transfer is treated by the application of a narrow-band statistical model (NBSM) that takes emission and absorption gas spectral structures into account. A Monte Carlo method (MCM) using a net exchange technique was developed to integrate the radiative-transfer equation in nongray gas. The proposed procedure is based on a net-exchange formulation (NEF). This formulation provides an efficient way of systematically fulfilling the reciprocity principle, which avoids some of the major problems usually associated with the Monte Carlo method; the numerical efficiency becomes independent of the optical thickness, highly nonuniform grid sizes can be used with no increase in computation time, and configurations with small temperature differences can be treated with very good accuracy. It is shown that the radiative term is significant compared to the conductive term in just two specific regions in the emitting and absorbing gas in the immediate vicinity of the wall and in the external part of the boundary layer. The exchange Monte Carlo method (EMCM) is described in detail for a one-dimensional slab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. Goody and Y. L. Yung,Atmospheric Radiation, 2nd edn., Oxford Univ. Press, U.K. (1989).

    Google Scholar 

  2. C. B. Ludwig, W. Malkmus, J. E. Reardon, and L. A. L. Thompson,Handbook of Infrared Radiation from Combustion Gases, NASA SP-3080 (1973).

  3. R. D. Cess,Int. J. Heat Mass Transfer,9, 1269 (1966).

    Article  MATH  Google Scholar 

  4. W. G. England and A. F. Emery,J. Heat Transfer,91, 37 (1969).

    Google Scholar 

  5. J. B. Bergquam,J. Heat Transfer, Proc. 5th Int. Heat Transfer Conf.,1, 83 (1974).

    Google Scholar 

  6. V. S. Arpaci,Int. J. Heat Mass Transfer,11, 871 (1968).

    Article  MATH  Google Scholar 

  7. R. D. Cess,J. Heat Transfer,86, 469 (1964).

    Google Scholar 

  8. J. L. Novotny, J. R. Lloyd, and J. D. Bankston,Progr. Astr. Aeronaut.,39, 309 (1975).

    Google Scholar 

  9. C. L. Tien and J. E. Lowder,Int. J. Heat Mass Transfer,9, 698 (1966).

    Article  Google Scholar 

  10. Y. Yamada,Int. J. Heat Mass Transfer,31, 429 (1988).

    Article  Google Scholar 

  11. W. Malkmus,J. Opt. Soc. Am.,57, 323 (1967).

    Article  Google Scholar 

  12. A. Soufiani, J. M. Hartmann, and J. Taine,J. Quant. Spectrosc. Radiat. Transfer,31, 243 (1985).

    Article  Google Scholar 

  13. M. Cherkaoui,Modélisation et étude de sensibilité des échanges radiatifs et conductifs couplés dans l’ air ambiant, Ph.D. Dissertation, Universite Paris XII, France (1993).

    Google Scholar 

  14. J. Liu and S. N. Tiwari,ASME HTD,244, 21 (1993).

    Google Scholar 

  15. S. S. Penner,Quantitative Molecular Spectroscopy and Gas Emissivities, Pergamon, London,6, 199 (1959).

    Google Scholar 

  16. C. L. Tien,Advances in Heat Transfer, Academic Press, New York,5, 254 (1968).

    Google Scholar 

  17. S. J. Young,J. Quant. Spectrosc. Radiat. Transfer,18, 1 (1977).

    Article  Google Scholar 

  18. J. R. Howell, in: T. F. Irvine and J. P. Hartnett (eds.),Advances in Heat Transfer,1 (1968).

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cherkaoui, M., Asbik, M. & Khmou, A. Calculation of radiative transfer in nongray gas using a narrow-band model and Monte Carlo simulation. J Eng Phys Thermophys 72, 905–914 (1999). https://doi.org/10.1007/BF02699414

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02699414

Keywords

Navigation