Skip to main content
Log in

Microstructural development during solidification of stainless steel alloys

  • Solidification
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The microstructures that develop during the solidification of stainless steel alloys are related to the solidification conditions and the specific alloy composition. The solidification conditions are determined by the processing method,i.e., casting, welding, or rapid solidification, and by parametric variations within each of these techniques. One variable that has been used to characterize the effects of different processing conditions is the cooling rate. This factor and the chemical composition of the alloy both influence (1) the primary mode of solidification, (2) solute redistribution and second-phase formation during solidification, and (3) the nucleation and growth behavior of the ferrite-to-austenite phase transformation during cooling. Consequently, the residual ferrite content and the microstructural morphology depend on the cooling rate and are governed by the solidification process. This paper investigates the influence of cooling rate on the microstructure of stainless steel alloys and describes the conditions that lead to the many microstructural morphologies that develop during solidification. Experiments were performed on a series of seven high-purity Fe-Ni-Cr alloys that spanned the line of twofold saturation along the 59 wt pct Fe isopleth of the ternary alloy system. High-speed electron-beam surface-glazing was used to melt and resolidify these alloys at scan speeds up to 5 m/s. The resulting cooling rates were shown to vary from 7°C/s to 7.5×106°C/s, and the resolidified melts were analyzed by optical metallographic methods. Five primary modes of solidification and 12 microstructural morphologies were characterized in the resolidified alloys, and these features appear to be a complete “set” of the possible microstructures for 300-series stainless steel alloys. The results of this study were used to create electron-beam scan speedvs composition diagrams, which can be used to predict the primary mode of solidification and the microstructural morphology for different processing conditions. Furthermore, changes in the primary solidification mode were observed in alloys that lie on the chromium-rich side of the line of twofold saturation when they are cooled at high rates. These changes were explained by the presence of metastable austenite, which grows epitaxially and can dominate the solidification microstructure throughout the resolidified zone at high cooling rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Katayama and A. Matsunawa:Proc. ICALEO, 1984, pp. 60–67.

  2. S.A. David, J.M. Vitek, and T.L. Hebble:Weld. J., 1987, vol. 66 (10), pp. 289-s–300-s.

    Google Scholar 

  3. J.W. Elmer: Sc.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1988.

  4. V.G. Rivlin and G.V. Raynor:Int. Met. Rev., Review No. 248, 1980, no. 1, pp. 21–38.

    Article  Google Scholar 

  5. M.C. Flemings:Solidification Processing, McGraw-Hill Book Company, New York, NY, 1974, pp. 146–54.

    Google Scholar 

  6. N. Suutala and T. Moisio: inSolidification Technology in the Foundry and Cast House, TMS, London, 1980, pp. 310–14.

    Google Scholar 

  7. S. Katayama and A. Matsunawa:Proc. ICALEO, 1985. pp. 19–25.

  8. J.A. Brooks: inTrends in Welding Research in The United States, S.A. David, ed., ASM, Metals Park, OH, 1982, pp. 331–35.

    Google Scholar 

  9. J.C. Lippold and W.F. Savage:Weld. J., 1980, vol. 59, (2), pp. 48-s–58-s.

    Google Scholar 

  10. T. Takalo, N. Suutala, and T. Moisio:Metall. Trans. A, 1976, vol. 7A, pp. 1591–92.

    CAS  Google Scholar 

  11. N. Suutala, T. Takalo, and T. Moisio,Metall. Trans. A, 1979, vol. 10A, pp. 512–14.

    CAS  Google Scholar 

  12. S.A. David:Weld. J., 1981, vol. 60 (4), pp. 63-s–71-s.

    Google Scholar 

  13. E.L. Brown, T.A. Whipple and G. Krauss:Duplex Stainless Steels, R.A. Lula, ed., ASM, Metals Park, OH, 1983, pp. 665–91.

    Google Scholar 

  14. J. Singh, G.R. Purdy, and G.C. Weatherly:Metall. Trans A, 1985, vol. 16A, pp. 1363–69.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

J. W. ELMER, formerly Graduate Student at the Massachusetts Institute of Technology

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elmer, J.W., Allen, S.M. & Eagar, T.W. Microstructural development during solidification of stainless steel alloys. Metall Trans A 20, 2117–2131 (1989). https://doi.org/10.1007/BF02650298

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02650298

Keywords

Navigation