Skip to main content
Log in

Zellkollaps im Holz—Erste Mitteilung: einflußgrößen bei der Entstehung des Zellkollaps und seine Rückbildung

Cell collapse in wood—Part I: Process variables and collapse recovery

  • Published:
Holz als Roh- und Werkstoff Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Schrifttum

  1. Anonymus: Collapse and the Reconditioning of Collapsed Timber. C.S.I.R. (Aust.) Div. For Prod., Trade Circular No. 20 (1942).

  2. Anonymus: Discoverer of Reconditioning Process Passes Away. The Aust. Timber J. Bd.19 (1953) S. 645/646.

  3. Anonymus: Ann. Report 1957/58. C.S.I.R.O. (Aust.) Div. For. Prod., S. 19.

  4. Amos, G. J.: Radial Fissures in the Early Wood of Conifers, Aust. J. Bot. Bd.2 (1954) S. 22/34.

    Article  Google Scholar 

  5. Armstrong, L. D., u. R. S. T. Kingston: Effect of Moisture Changes on Creep in Wood. Nature Bd.185 (1960) S. 862/863.

    Google Scholar 

  6. Asano, I.: Studies on the Collapse in Wood. J. Jap. Wood Res. Soc. Bd.2 (1956) S. 104/107.

    Google Scholar 

  7. Atkinson, J.: An Account of the State of Agriculture and Grazing in New South Wales. London 1826: J. Cross.

    Google Scholar 

  8. Barkas, W. W.: Collapse of Capilaries in the Drying of Porous Gels. Nature Bd.158 (1946) S. 341/342.

    Google Scholar 

  9. Barkas, W. W.: The Swelling of Wood under Stress. London 1949: H.M.S.O.

    Google Scholar 

  10. Bisset, I. J. W., u. E. L. Ellwood: The Relation of Differential Collapse and Shrinkage to Wood Anatomy inEucalyptus regnans F. v. M. andEucalyptus gigantea Hook f. Aust. J. Appl. Sci. Bd.2 (1951) S. 175/183.

    Google Scholar 

  11. Bull, T. H.: The Tensile Strengths of Liquids under Dynamical Loading. Phil. Mag., 8th Ser. Bd.1 (1956) S. 153/165.

    Google Scholar 

  12. Briggs, L. J.: Maximum Superheating of Water as a Measure of Negative Pressure. J. Apply. Phys. Bd.26 (1955) S. 1001/1003.

    Google Scholar 

  13. British Commonwealth Forest Terminology. Part II, Forest Products Research, Extraction, Utilization and Trade. London 1957: Publ. by Empire Forestry Association at the Royal Empire Society.

    Google Scholar 

  14. Bruun, H.: Der Einfluß der Grenzflächenaktivmittel auf das Eindringen von Wasser in Holz von Laub- und Nadelhäumen. Åbo Akademi, Åbo, Institutet for Aräkemi, Medd. Nr. 186 (1961).

  15. Bryan, E. L.: Collapse and its Removal. For. Prod. J. Bd.10 (1960) S. 598/604.

    Google Scholar 

  16. Campbell, G. S.: The Value of Presteaming for Drying some Collapse-Susceptible Eucalypts. For. Prod. J. Bd.9 (1961) S. 343 bis 347.

    Google Scholar 

  17. Chapman, R. W.: The Strength of South Australian Timbers. Trans. Roy. Soc. South Aust. Bd.32 (1908) S. 325/337.

    Google Scholar 

  18. Chudnoff, M.: The Effect of Zinc Chloride on some Shrinkage Properties ofE. camadulensis Wood. Hanoth Jg. 1953 No. 2 S. 5/16.

  19. Chudnoff, M.: Preventing Collapse during Seasoning. Hayaar Jg. 1955 No. 4 S. 76/79.

    Google Scholar 

  20. Chudnoff, M.: Effect of Zinc Chloride on some Shrinkage Properties ofEucalyptus rostrata Wood. For. Prod. J. Bd.5 (1955) S. 130/141.

    Google Scholar 

  21. Chudnoff, M.: Preventing Collapse during Seasoning. Proc. 4th Forestry Congress, Dehra Dun 1954. Bd.2 (1957) S. 592/597.

    Google Scholar 

  22. Clarke, S. A.: The Seasoning of Western Australian Hardwoods, Forsts Dept., Western Australia, Bull. 40 (1927).

  23. Clausen, V. H., L. W. Rees and F. H. Kaufert: Development of Collapse in Aspen Lumber. For. Prod. Res. Soc. Proc. Bd.3 (1949) S. 460/468.

    Google Scholar 

  24. Côté, W. A. Jr.: Electron Microscopic Studies of Pit Membrane Structure. For. Prod. J. Bd.8 (1958), S. 296/301.

    Google Scholar 

  25. Cronshaw, J.: The Fine Structure of the Pits ofEucalyptus regnans (F. Mucll.) and their Relation to the Movement of Liquids into the Wood. Aust. J. Bot. Bd.8 (1960) S. 51/57.

    Article  Google Scholar 

  26. Cunningham, P.: Two Years in New South Wales, London 1827: Colburn.

    Google Scholar 

  27. Day, W. R.: Report on Drought Cardes of Conifes, Imp. For. Inst., Oxford 1950, Mimeo (12 pp.).

    Google Scholar 

  28. Divon, H. H.: Transpiration and the Ascent of Sap in Plants. London 1914: Mac Millan & Co.

    Google Scholar 

  29. Dunlap, F.: Kiln-Drying Hardwood Lumber, U.S. Dept. Agric. For Ser. Circular 48 (1906).

  30. Ellint, C. S.: Problems in the Seasoning of Hardwoods. Aust. For. J. Bd.6 (1923) S. 290/294.

    Google Scholar 

  31. Elliot, C. S.: Collapse of Timber. A Major Cause of Waste in the Australian Timber Industry. J. C.S.I.R.O. Bd.3 (1930) S. 204/214.

    Google Scholar 

  32. Ellwood, E. L.: The Seasoning of Rotary Peeled Veneer fromEucalyplus regnans F.v.M.. Aust. J. Appl. Sci. Bd.3 (1952) S. 53/70.

    Google Scholar 

  33. Ellwood, E. L.: Properties of Beech in Tension Perpendicular to the Grain and their Relation to Drying. For. Prod. J. Bd.3 (1953) S. 202/209.

    Google Scholar 

  34. Ellwood, E. L. Klin Drying 4/4 California Black Oak, Cal Forestry and For. Prod., No. 17 (1959) November.

  35. Ellwood, E. L., B. A. Ecklund und E. Zavarin: Collapsc in Wood ... Exploratory Experiments in its Prevention. For. Prod. J. Bd.10, (1960) S. 8/21.

    Google Scholar 

  36. Ellwood, E. L., J. W. Gottstein und W. G. Kauman: A Laboratory Study of the Vapour Drying Process. III. Vapour Drying of Timber in Joinery and Railway Sleeper Sizes, C.S.I.R.O. (Aust.), Div. For. Prod. Technol. Paper No. 14 (1961).

  37. Emerton, H. W.: The Effects of Drying on Individual Softwood Fibres, Brit. Paper and Board Makers' Ass. Tech. Sect., Jg. 1955. Proc. 36. Pt. 3 (December) S. 593/605.

  38. Frey-Wyssling, A., u. H. H. Bosshard: Über den Feinbau der Schließhäute in Höffüpfent. Holz als Roh- und Workst. Bd.11 (1953) S. 417 bis 426.

    Google Scholar 

  39. Frey-Wyssling, A., K. Mühlethaler u. H. H. Bosshard: Über die mikroskopische Auflösung des Torus in Hoftüpfeln. Holzforschung und Holzverwert. Bd.11 (1959) S. 107/108.

    Google Scholar 

  40. Gottstein, J. W.: An Effect of Peeler Log Heating on the Subsequent Shrinkage of Vener during Drying. Composite Wood Bd.3 (1956) S. 105/109..

    Google Scholar 

  41. Gottstein, J. W., u. D. M. Cullity. A new Type Screened Dryer for Rotary Peeled Veneers. For. Prod. J. Bd.5, (1955) S. 289/294.

    Google Scholar 

  42. Gottstein, J. W., u. B. McCombe: Recent Studies on “Ash” Type Hardwoords—Collapse intensitied by Heating while Green. C.S.I.R.O. (Aust.), For. Prod. Newsletter No. 216 (1956).

  43. Greenhill, W. L.: The Shrinkage of Australian Timbers. Part I. A new Method of Determing Shrinkages and Shrinkage Figures for a Number of Australian Species. C.S.I.R. (Aust.), Pamphlet No. 67 (1936).

  44. Greenhill, W. L., Collapse and its Removal: Some Recent Investigations withEucalyptus regnans. C.S.I.R. (Aust.). Pamphlet No. 75 (1938).

  45. Greenhill, W. L., Collapse and its Removal. Nust. Timber J. Bd.6 (1940) S. 160/161.171, 228/229, 239, 241.

    Google Scholar 

  46. Greenhill, W. L.: The Shrinkage of Australian Timbers. Part. 2. Shrinkage Data for 170 Timbers. C.S.I.R. (Aust.), Pamphlet No. 97 (1946).

  47. Greenhill, W. L.: The Differential Shrinkage of Wood. Amer. Soc. Mech. Eng., Trans., Bd.66 (1944) S. 152/154.

    Google Scholar 

  48. Guernsey, F. W. Collapse in Western Red Cedar. Brit. Columbia Lumberman, April (1951).

  49. Hawley, L. F.: Wood-Liquid Relations. U.S. Dept. Agr. For. Prod. Lab., Tech. Bull. 248 (1931).

  50. Hermans, P. H.: Physics and Chemistry of Cellulose Fibres with Particular Reference to Oregon. New York 1949: Elsevir Publ. Co.

    Google Scholar 

  51. Hopkins, H.: Australian Timbers. Victorian Hardwoods. Proc. of the Conference on Australian Timbers, Forestry and Reafforestation Melbourne, November 1916. Mellbourne 1916: A. J. Mullett.

    Google Scholar 

  52. Huber, B.: Die Gefä\leitung. Chap. in Encyclopedia of Plant Physiology, Vol. III. S. 541/582. Ed. W. Ruhland, Berlin 1956: Springer.

    Google Scholar 

  53. Jenkins, J. H.: Prevention of Collapse in Kiln Drying of Western Red Cedar. Vancouver 1932: Canad. For. Prod. Lab. (Mimco).

  54. Kapur, S. N., u. A. Rehman: The Occurrence of Collapse in Certain Indian Woods during Drying and a Study of the Methods of its Removal. Indian Forester, November 1935.

  55. Kauman, W. G., J. W. Gottstein u. D. Lantican: The Mechanical Drying of “Ash” Encalypt Veneers. Aust. J. Appl. Sci. Bd.7 (1956) S. 69/97.

    Google Scholar 

  56. Kauman, W. G., J. W. Gottstein u. D. Lantican: Quality Evaluation by Numerical and Subjective Methods, with Application to Dried Veneer. Biometrics Bd.12 (1956) S. 127/153.

    Article  Google Scholar 

  57. Kauman, W. G.: The Influence of Drying Stresses and Anisotropy on Collapse inEucalyplus regnaus. C.S.I.R.O. (Aust.). Div. For. Prod. Technol. Paper No. 3 (1958).

  58. Kauman, W. G.: Collapse in some Eucalypts after Treatment in luorganle Salt Solutions, For. Prod. J. Bd.10 (1960) S. 463/467.

    Google Scholar 

  59. Kauman, W. G.: Contributions to the Theory of Cell Collapse in Wood: Investigations withEucalyplus reguans. Aust. J. Appl. Sci. Bd.11 (1960) S. 122/145.

    Google Scholar 

  60. Kauman, W. G., E. L. Ellwood u. J. W. Gottstein: A laboratory Study of the Vapour Drying Process. I. Theoretical Aspects of Vapour Drying. C.S.I.R.O. (Aust.), Div. For. Prod. Technol. Paper No. 14 (1901).

  61. Kauman, W. G.: The Effect of Thermal Degradation on Shrinkage and Collapse of Wood from three Australian Species. For. Prod. J. Bd.11 (1961) S. 445/452.

    Google Scholar 

  62. Kelsey, K. E., u. R. S. T. Kingston: The Effect of Specimen Shape on the Shrinkage of Wood. For. Prod. J. Bd.7 (1955) S. 234/235.

    Google Scholar 

  63. Keylwerth, R.: Formänderungen von Holzquerschnitten. Holz als. Roh- und Werkst. Bd.9 (1951) S. 253/260.

    Google Scholar 

  64. Kingston, R. S. T., u. C. J. E.: Risdon: Shrinkage and Density of Australian and other South-West Pacific Woods. C.S.I.R.O. (Aust.). Div. For. Prod. Technol. Paper No. 13 (1961).

  65. Koehler, A., u. R. Thelen: The Kiln Drying of Lunber. New York 1926. McGraw Hill.

    Google Scholar 

  66. Kollmann, E.: Technologie des Holzes. 2. Bd., 2. Aufl. Berlin 1955 Springer.

    Google Scholar 

  67. Kramer, P. J.: Causes of Injury to Plants Resulting from Flooding of the Soil. Plant Physiol. Bd.26 (1931) S. 722.

    Article  Google Scholar 

  68. Kröll, K.: Die Bewegung der Feuchtigkeit in Nadelholz während der Trocknung bei Temperaturen um 100. Holz als Roh- und Werkstoft Bd.9 (1931) S. 176/181, 216/224.

    Google Scholar 

  69. Küster, E.: Die Pflanzenzelle. Jena 1951: G. Fischer.

    Google Scholar 

  70. Lough borough, W. K., u. L. D. Espenas: Method Involving the Use of Chemicals for Inereasing the Drving Rate of Wood. U.S. Patent No. 2, 500, 954, March 21 (1950).

  71. Lutz, H. J.: Occurrence of Cleffs in the Wood of Living White Spruce in Maska. J. For. Bd.50 (1952) S. 99/102.

    Google Scholar 

  72. Mann, J.: Australian Timber. Melbourne, 1900 Walker, May & Co.

    Google Scholar 

  73. Manley, D. M. J. P.: Change of Size of Vir Bubbles in Water Containing a Small Dissoved Vir-Content. Brit. J. Appl. Phys. Bd.11 (1960) S. 38/42.

    Google Scholar 

  74. Merchant, M. V.: A Study of Water Swollen Cellulose Fibres which have been Liquid Exchanged and Dried from Hydrocarbon. Tappi Bd.40 (1957) S. 771/781.

    Google Scholar 

  75. Meredith, R.: The Mechanical Properties of Textile Fibres. Amsterdam 1956: North. Holl. Publ. Co.

    Google Scholar 

  76. Meyer, B. S.: Wall and Turgor Pressure and Tension. Diffusion Pressure Deficit or Suction Force. Chap. 111. B in Vol. 11 of “Enclyclopedia of Plant Physiology” Ed. W. Ruhland, Berlin 1956: Springer.

    Google Scholar 

  77. Moskaleva, V. E.: The Swelling of Microsections of Natural and Pressed Wood of Pine in Liquids of Different Polarity. Acad. Sci. U.S.S.R. Trans. Wood Inst. Bd.9 (1953) S. 121/126.

    Google Scholar 

  78. Najera Angulo, F.: Estudros referentes a la desecación artificial y aplicaciones de la madera de losEucalyptus camaldulensis y gbodulus. Spain. Min. de Agric., Instituto Forestal, Anales, Bd.34 (1957) S. 97/101.

    Google Scholar 

  79. Nayaranamurti, D., S. S. Ghosh u. G. M. Verma: Structural Changes in Wood Caused by Swelling and Shrinkage under Mechanical Constraint. Holzforschg. und Holzverwertg. Bd.13 (1961) S. 31/34.

    Google Scholar 

  80. Nissan, A. H.: The Rheological Behaviour of Hydrogen Bouded Solids, Parts I and II. Trans. Farad. Soc. Bd.53 (1957) S. 700/721.

    Google Scholar 

  81. Pankevielus, E. R.: On the Effect of Hydrochloric Acid and Sodium Chloride on Collapse inEucadyplus camaldulensis. Dehn. La-Yaaran Bd.10 (1960) S. 51/56.

    Google Scholar 

  82. Pankevicius, E. R.: Influence of Position in Tree on Recoverable Collapse in Wood. For. Prod. Bd.11 (1961) S. 131/132.

    Google Scholar 

  83. Pankevicius, E. R.: Collapse Intensity for two Eucalypts after Treatment with Hydrochloric Acid and Sodium Chloride Solutions. For. Prod. J. Bd.12 (1962) S. 39/42.

    Google Scholar 

  84. Page, D. H. u. P. A. Tydeman: Fibre-to-Fibre Bonds. Part II. A Preliminary Study of their Properties in Paper Sheets. Paper Technol. Bd.1 (1960). S. 519/530.

    Google Scholar 

  85. Preston, R. D.: Translocation of Solutes in Plants, being a Chapter in “Deformation and Flow in Biological Systems”, Ed. A. Frey-Wyssling. Amsterdam 1952: North Holland Publ. Co.

    Google Scholar 

  86. Reid, J. S. u. M. T. Mitchell: Internal Checks Occurring in Douglas Fir from two Sites. New Zealand For. Ser., For Prod. Res. Notes 1, 2: 2 (1951).

  87. Runkel, R. O. H.: Die Sorption der Holzfaser in morphologisch-chemischer Betrachtung. Holz als Roh- und Werkstoff Bd.12 (1954) S. 226/232.

    Google Scholar 

  88. Runkel, R. O. H., u. H. Witt: Zur Kenntnis des thermoplastischen Verhaltens von Holz. III. Mitt. Holz als Roh- und Werkstoff Bd.11 (1953) S. 457 bis 461.

    Google Scholar 

  89. Schniewind, A. P.: On the Nature of Drying Stresses in Wood. Holzforschung Bd.14 (1960) S. 161/168.

    Article  Google Scholar 

  90. Stamm, A. J.: Effect of Inorganic Salts upon the Swelling and the Shrinking of Wood. J. Amer. Chem. Soc. Bd.56 (1934) S. 1195/1204.

    Article  Google Scholar 

  91. Stamm, A. J., u. W. H. Petering: Effect of Wetting Agents upon the Treatment of Wood with Aqueous Solutions. Paper Ind. and Paper World Bd.21 (1939) S. 796.

    Google Scholar 

  92. Stamm, A. J., u. W. K. Loughborough: Variation in Shrinkage and Swelling of Wood. Amer. Soc. Mech. Eng., Trans. Bd.64 (1942) S. 379/386.

    Google Scholar 

  93. Stamm, A. J.: Passage of Liquids, Vapors and Dissolved Materials through Softwoods. U. S. Dept. Agric., For Prod. Lab., Tech. Bull. No. 929 (1946).

  94. Stamm, A. J.: Surface Properties of Cellulosic Materials. Chapter in “Wood Chemistry” (Ed. Wise, L. E., u. E. C. John) Vol. 2 New York 1952: Reinhold Publ. Corp.

    Google Scholar 

  95. Stamm, A. J.: Thermal Degradation of Wood and Cellulose. Ind. Engg. Chem. Bd.48 (1956) S. 413/417

    Google Scholar 

  96. Stamm, A. J.: Adsorption in Swelling versus non Swelling Systems. Tappi Bd.40 (1957) S. 761/770.

    Google Scholar 

  97. Stern, K.: Die Bedeutung des kapillaren Baues für die Kohäsion des Wassers in den Leithahnen Ber. d. deutsch. bot. Ges. Bd.44 (1926) S. 470/474.

    Google Scholar 

  98. Stewart, C. M., J. F. Kottek, H. E. Dadswell u. A. J. Watson: Hydrolytic Degradation within Living Tress and its Effect on the Mechanical Pulping and other Properties of Wood. Tappi Bd.44 (1961) S. 798/813.

    Google Scholar 

  99. Stillwell, S. T. C.: “Collapse” in Timber. Removal of the Defect by Means of high Temperature Steaming Treatment. The Timber Trades J. Bd.21 (1931) H. 2

    Google Scholar 

  100. Stillwell, S. T. C., u. W. C. Stevens: Elm, Beech and Ash. The Effect of High Temperature Steaming on their Seasoned State. The Timber Trades J., December 12 (1931).

  101. Straka, H.: Die Bedeutung des Wassers für mechanische Bewegungen der Pflanze. Chap. in Encyclopedia of Plant Physiology, Ed. W. Ruhland, Berlin 1956: Springer.

    Google Scholar 

  102. Summers, R. E.: Reconditioning of Collapsed Hardwood, etc., Commonwealth of australia, Munitions Supply Lab, Tech. Notes 28/1, 29/1, 29/4 (1929).

  103. Suzuki, Y: Studies on Bamboo, IX. Water Relations in Bamboo. Bull. Tokyo Univ. Forests, No. 44 (March) (1953).

  104. Temperley, H. N., u. L. G. Chambers: The Behaviour of Water under Hydrostatic Tension. Proc. Phys. Soc. Lond. Bd.58 (1946) S. 420/443.

    Google Scholar 

  105. Tiemann, H. D.: Eucalyptus Lumber. Hardwood Record, Chicago, Sept. 25 and Oct. 10 (1913).

  106. Tiemann, H. D.: Principles of Kiln Drying. Lumber World Review, January 15 and September25 (1915).

  107. Tiemann, H. D. The Kiln Drying of Lumber. Philadelphia 1917: Lippincott Co.

    Google Scholar 

  108. Tiemann, H. D.: The Kiln Drying of Timber. A Series of ten Lectures Delivered in Melbourne, Victoria, under the Auspices of the Victorian Forests Commission. Melbourne 1924. A. J. Mullett.

    Google Scholar 

  109. Tiemann, H. D.: How to Restore Collapsed Timber. The. Lumber Worker Bd.5 (1929) S. 37/44.

    Google Scholar 

  110. Tiemann, H. D.: Shapes and Sizes. The Influence of Shape upon the Way in which Wood Dries. The Lumber Worker Jg. 1931, H. 10 S. 10/13.

    Google Scholar 

  111. Tiemann, H. D.: Collapse of Aspen Impregnated with Salt and Sodium Bicarbonate. U. S. Dept. Agric. For Prod. Lab., Report No. 232 (1937).

  112. Tiemann, H. D.: Collapse as Shown by the Microscope. J. For. Bd.39 (1941) S. 271/282.

    Google Scholar 

  113. Tiemann, H. D.: Wood Technology, 1. Aufl. New York 1942: Pitman Publ. Comp.

    Google Scholar 

  114. Tiemann, H. D.: Compressed Wood versus Collapse. Southern Lumberman, Bd.176 (1948) H. 2209 S. 68, 70; H. 2211 S. 70, 72; H. 2213 S. 62, 66; Bd.177 (1949) H. 2215 S. 68, 70, 72.

    Google Scholar 

  115. Tiemann, H. D.: Permeability of Wood to Air and Liquids. Soap Foam Tests. Southern Lumberman, Bd.177 (1948) S. 68.

    Google Scholar 

  116. Tiemann, H. D.: The Kiln-Drying of Lumber. 7. Examples of Collapse and its Effects. Southern Lumberman Bd.179 (1949) S. 68/74.

    Google Scholar 

  117. Tiemann, H. D.: Wood Technology, 3 Aufl. London 1951: Pitman & Sons Ltd.

    Google Scholar 

  118. Tiemann, H. D.: What is Collapse? Wood Working Digest Bd.54 (1952) S. 95/101.

    Google Scholar 

  119. Tinto, J. C.: Trata miento fisico de madera de eucalipto. Corrección de colapso enEucalyptus globulus Labill. Rev. de Investig. Forest. (Argent.) Bd.1 (1957) S. 123/151.

    Google Scholar 

  120. Tinto, J. C.: Considerationes sobre el secado de la madera de coihue. Admin. Nac. de Bosques, Dir. de Invest. For., Buenos Aires). Folletos Tecnicos Forestales, No. 11 (1961).

  121. Villiêre, A.: Le phénomène de collapse et ses répercussions sur le séchage des planches et placages. Revue du Bois Bd.8 (1953) S. 17/20.

    Google Scholar 

  122. Villière, A.: Actions de la vapcur sur le bois. Revue du Bois Bd.16 (1961) S. 35/37.

    Google Scholar 

  123. Volmer, M.: Kinetik der Phasenbildung. Dresden 1939: Theodor Steinkopff.

    Google Scholar 

  124. Vorreiter, L.: Holzkonstituenten und Raumquellung des Holzes. Holz als Roh- und Werkstoff Bd.12 (1954) S. 223/226.

    Article  Google Scholar 

  125. Vorreiter, L.: Die Holzquellung als Funktion mehrerer veränderlicher Faktoren, insbesondere Temperatur und Holz-abmessung. Holz als Roh- und Werkstoft Bd.13 (1955) S. 301 bis 312.

    Google Scholar 

  126. Vorreiter, L. Holztechnologisches Handbuch, Band II. Wien 1958: G. Fromme.

    Google Scholar 

  127. Wardrop, A. B., u. H. E. Dadswell: The Structure and Properties of Tension Wood. Holzforschung Bd.9 (1955) S. 97/104.

    Google Scholar 

  128. Wardrop, A. B., u. H. E. Dadswell: The Nature of Reaction Wood. IV. Variation in Cell Wall Organization of Tension Wood Fibres. Aust. J. Bot. Bd.3 (1955) S. 177/189.

    Google Scholar 

  129. Warren, W. H.: Australian Timbers. Sydney 1892: Charles Potter.

    Google Scholar 

  130. Wright, G. W.: Value of Air-Holding. Proc. Predrying Conference, Launceston, Tasmania, December (1958). (Conference convened by Tasmanian Timber Association and Division of Forest Products. C. S. I. R. O.)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zur Zeit Instituto Forestal, Santiago de Chile.

Die British Commonwealth Forest Terminology [13] beschreibt den Zellkollaps als „Einsinken bzw. Verformen der Holzzellen beim Trocknen, die manchmal eine übermäßige bzw. unregelmäßige Schwindung bewirken”. Der Verfasser schlägt vor, statt „manchmal” das Wort „gewöhnlich” einzusetzen. In dem Kapitel „Theorien des Kollaps” wird eine für experimentelle Messungen geeignete Definition vorgeschlagen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kauman, W.G. Zellkollaps im Holz—Erste Mitteilung: einflußgrößen bei der Entstehung des Zellkollaps und seine Rückbildung. Holz als Roh-und Werkstoff 22, 183–196 (1964). https://doi.org/10.1007/BF02613024

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02613024

Navigation