Skip to main content
Log in

Development of athermal and isothermalε-martensite in atomized Co-Cr-Mo-C implant alloy powders

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this work, CoCr-Mo compacted powders were sintered at 900°C to 1300°C for 1 to 2 hours and conditions for total carbide dissolution in fcc cobalt were determined. Accordingly, it was found that sintering at temperatures between 900°C to 1100°C led to removal of the dendritic structure and to carbide precipitation at the grain boundaries (gbs), as well as in the bulk. Moreover, recrystallization and grain growth were always found to occur during powder sintering. At temperatures above 1100°C, no carbide precipitation occurred indicating that carbides were not stable at these temperatures. Hence, compact powders were annealed at 1150°C to promote the development of a single-phase fcc solid solution. This was followed by rapid cooling to room temperature and then aging at 800°C for 0 to 18 hours. Rapid cooling from 1150°C promoted the development of up to 64 pct athermal ε-martensite through the face-centered cubic (fcc) → hexagonal crystal structure (hcp) martensitic transformation. The athermal martensite was associated with the development of a network of parallel arrays of fine straight transgranular markings within the fcc matrix. Moreover, aging at 800°C for 15 hours led to the development of 100 pct isothermal hcp ε-martensite. From the experimental outcome, it is evident that isothermal ε-martensite is the most stable form of the hcp Co phase. Apparently, during aging at 800°C, the excess defects expected in athermal martensite are removed by thermally activated processes and by the development of isothermal ε-martensite, which has the appearance of “pearlite.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.M. Rose:in 1974 Yearbook of Science and Technology, McGraw-Hill, New York, NY, 1974, pp. 128–356.

    Google Scholar 

  2. C.M. Agrawal:JOM, 1998, vol. 50, pp. 31–35.

    CAS  Google Scholar 

  3. Implant Wear: The Future of Total Joint Replacement, T. Wright and S. Goodman, eds., American Academy of Orthopaedic Surgeons, Rosemont, IL, 1996, pp. 116–24.

    Google Scholar 

  4. Biocompatibility of Clinical Implant Materials, vol. 1,CRC Series in Biocompatibility, D.F. Williams, ed., CRC Press, Boca Raton, FL, 1981.

    Google Scholar 

  5. D.C. Mears:Int. Met. Rev., 1977, vol. 22, pp. 119–55.

    CAS  Google Scholar 

  6. H.S. Dobbs and Robertson:J. Mater. Sci., 1983, vol. 18, pp. 391–401.

    Article  CAS  Google Scholar 

  7. R. Brown:Cobalt News, 2001, vols. 1–4, pp. 9–14.

    Google Scholar 

  8. T.M. Devine and J. Wulff:J. Biomed. Mater. Res., 1975, vol. 9, pp. 151–67.

    Article  CAS  Google Scholar 

  9. R.T. Holt and W. Wallace: Mechanical Engineering Report No. MS-143, National Research Council Canada, Ottawa, 1980.

    Google Scholar 

  10. J.B. Vander Sande, J.R. Coke, and J. Wulff:Metall. Trans. A, 1976, vol. 7A, pp. 389–97.

    Google Scholar 

  11. A.J. Saldivar and H.F. López:Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2517–24.

    Google Scholar 

  12. G.B. Olson and M. Cohen:Metall. Trans. A, 1976, vol. 7A, pp. 1915–23.

    CAS  Google Scholar 

  13. N. Cong Dahn, D. Morphy, and K. Rajan:Acta Metall., 1984, vol. 32, pp. 1317–22.

    Article  CAS  Google Scholar 

  14. F. Sebilleau and H. Bibring:Rev. Met, 1955, vol. 1642, pp. 209–17.

    Google Scholar 

  15. K. Ishida and T. Nishizawa:Phase Equilibria, 1991, vol. 12, pp. 417–24.

    CAS  Google Scholar 

  16. A.J. Saldivar Garcia, A. Mani Medrano, and A. Salinas Rodriguez:Scripta Mater., 1999, vol. 40, pp. 717–22.

    Article  CAS  Google Scholar 

  17. P. Huang and H.F. López:Mater. Sci. Technol., 1999, vol. 15, pp. 157–63.

    CAS  Google Scholar 

  18. A.J. Saldívar García: Doctoral Thesis, CINVESTAV-IPN Unidad Saltillo, Saltillo, Mexico, 1998.

    Google Scholar 

  19. K. Rajan and J.B. Vander Sande:J. Mater. Sci., 1982, vol. 17, pp. 769–78.

    Article  CAS  Google Scholar 

  20. E. Smethurst and R.B. Waterhouse:J. Mater. Sci., 1977, vol. 12, pp. 1781–92.

    Article  CAS  Google Scholar 

  21. P. Huang and H.F. López:Mater. Sci. Technol., 1999, vol. 15, pp. 1324–29.

    CAS  Google Scholar 

  22. A.J. Saldivar and H.F. López:J. Biomed. Mater. Res. A, 2005, vol. 74A, pp. 269–74.

    Article  CAS  Google Scholar 

  23. M. Sage and C. Gillaud:Rev. Met., 1950, vol. 49, pp. 139–45.

    Google Scholar 

  24. A.M. Mani: Master’s Thesis, CINVESTAV-IPN Unidad Saltillo, Saltillo, Mexico 1997.

    Google Scholar 

  25. R.N.J. Taylor and R.B. Waterhouse:J. Mater. Sci, 1983, vol. 18, pp. 3265–80.

    Article  CAS  Google Scholar 

  26. C.L. Magee:Metall. Trans., 1971, vol. 2, pp. 2419–27.

    Article  CAS  Google Scholar 

  27. A. Sato, Y. Sunaga, and T. Mori:Acta Metall., 1977, vol. 25, pp. 627–35.

    Article  CAS  Google Scholar 

  28. A.J. Saldivar and H.F. Lopez:Scripta Mater., 2001, vol. 45, pp. 427–33.

    Article  CAS  Google Scholar 

  29. J.P. Hirth:Metall. Trans., 1970, vol. 1, pp. 2367–74.

    Google Scholar 

  30. F.R. Beckitt and B.R. Clark:Acta Metall., 1967, vol. 15, pp. 113–29.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, C., Park, H., Seong, H. et al. Development of athermal and isothermalε-martensite in atomized Co-Cr-Mo-C implant alloy powders. Metall Mater Trans A 37, 3197–3204 (2006). https://doi.org/10.1007/BF02586154

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02586154

Keywords

Navigation