Skip to main content
Log in

Continuous cooling transformation diagrams applicable to the heat-affected zone of HSLA-80 and HSLA-100 steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Continuous cooling transformation (CCT) diagrams for HSLA-80 and HSLA-100 steels pertaining to fusion welding with heat inputs of 10 to 40 kJ/cm, and peak temperatures of 1000 °C to 1400 °C have been developed. The corresponding nonlinear cooling profiles and related γ → α phase transformation start and finish temperatures for various peak temperature conditions have been taken into account. The martensite start (M s ) temperature for each of the grades and ambient temperature microstructures were considered for mapping the CCT diagrams. The austenite condition and cooling rate are found to influence the phase transformation temperatures, transformation kinetics, and morphology of the transformed products. In the fine-grain heat-affected zone (FGHAZ) of HSLA-80 steel, the transformation during cooling begins at temperatures of 550 °C to 560 °C, and in the HSLA-100 steel at 470 °C to 490 °C. In comparison, the transformation temperature is lower by 120 °C and 30 °C in the coarse-grain heat-affected zone (CGHAZ) of HSLA-80 steel and HSLA-100 steel, respectively. At these temperatures, acicular ferrite (AF) and lath martensite (LM) phases are formed. While the FGHAZ contains a greater proportion of acicular ferrite, the CGHAZ has a higher volume fraction of LM. Cooling profiles from the same peak temperature influence the transformation kinetics with slower cooling rates producing a higher volume fraction of acicular ferrite at the expense of LM. The CCT diagrams produced can predict the microstructure of the entire HAZ and have overcome the limitations of the conventional CCT diagrams, primarily with respect to the CGHAZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.H. Woodhead and S.R. Keown:Conf. Proc. HSLA Steels—Metallurgy and Application, Beijing, China, Nov. 4–8, 1985, ASM INTERNATIONAL, Metals Park, OH, 1986, pp. 15–28.

    Google Scholar 

  2. A.D. Wilson:J. Met, 1987, vol. 29, pp. 39–48.

    Google Scholar 

  3. S.W. Thompson, D.J. Colvin, and G. Krauss:Metall. Mater. Trans. A, 1990, vol. 21A, pp. 1493–507.

    CAS  Google Scholar 

  4. S.W. Thompson, D.J. Colvin, and G. Krauss:Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1557–71.

    CAS  Google Scholar 

  5. G. Spanos, R.W. Fonda, R.A. Vandermeer, and A. Matuszeski:Metall. Mater. Trans. A, 1995, vol. 26A, pp. 3277–93.

    CAS  Google Scholar 

  6. R.W. Fonda, G. Spanos, and R.A. Vandermeer:Proc. 4th Int. Conf. on Trends in Welding Research, Gatlinburg, TN, June 5–8, 1995, ASM INTERNATIONAL, Materials Park, OH, 1995, pp. 277–82.

    Google Scholar 

  7. K. Easterling:Introduction to the Physical Metallurgy of Welding, Butterworth-Heinemann, Oxford, United Kingdom, 1992, pp. 138–72.

    Google Scholar 

  8. M. Shome, O.P. Gupta, and O.N. Mohanty:Metall. Mater. Trans. A, 2004, vol. 35A, pp. 985–96.

    CAS  Google Scholar 

  9. T. Gladman and F.B. Pickering:J. Iron Steel Inst., 1967, vol. 205, pp. 653–64.

    CAS  Google Scholar 

  10. L.J. Cuddy and L.C. Raley:Metall. Trans. A, 1983, vol. 14A, pp. 1989–95.

    CAS  Google Scholar 

  11. E.J. Palmiere, C.I. Garcia, and A.J. DeArdo:Metall. Trans. A., 1994, vol. 25A, pp. 277–86.

    CAS  Google Scholar 

  12. A.L. Wilson and P.R. Howell:38th MWSP Conf. Proc., ISS, Warrendale, PA, 1997, vol. 36, pp. 527–34.

    Google Scholar 

  13. P.A. Manohar, D.P. Dunne, T. Chandra, and C.R. Killmore:Iron Steel Inst. Jpn. Int., 1996, vol. 36, pp. 194–200.

    CAS  Google Scholar 

  14. O. Grong:Proc. 4th Int. Conf. on Trends in Welding Research, Gatlinburg, TN, June 5–8, 1995, ASM INTERNATIONAL, Materials Park, OH, 1995, pp. 175–87.

    Google Scholar 

  15. M. Shome, D.S. Sarma, O.P. Gupta, and O.N. Mohanty:Iron Steel Inst. Jpn. Int., 2003, vol. 43, pp. 1431–37.

    CAS  Google Scholar 

  16. M. Shome, O.P. Gupta, and O.N. Mohanty:Scripta Mater., 2004, vol. 50, pp. 1007–10.

    Article  CAS  Google Scholar 

  17. G. Spanos, R.W. Fonda and R.A. Vandermeer: NRL Review No. NRL/PU/5230/95/274, May 1995, pp. 59–70.

  18. T.A. Kop, P.G.W. Remijn, J. Sietsma, and S. Van der Zwaaag:Materials Science Forum, Trans Tech Publications, Aedermannsdorf, Switzerland, 1998, vol. 284–86, pp. 193–200.

    Google Scholar 

  19. M.R. Krishnadev, J.T. Bowker, J.T. McGrath, V.K. Vasudevan, and K.D. Challenger:Proc. 2nd Int. Conf. on Trends in Welding Research, Gatlinburg, TN, May 14–18, 1989, pp. 799–803.

  20. M.R. Krishnadev, W.L. Zhang, and J.T. Bowker:Proc. 3rd Int. Conf. on Welding Research, ASM INTERNATIONAL, Materials Park, OH, 1992, pp. 599–603.

    Google Scholar 

  21. S.D. Bhole and A.G. Fox:Can. Metall. Q., 1996, vol. 35, pp. 151–58.

    Article  Google Scholar 

  22. R.W. Fonda, G. Spanos, and R.A. Vandermeer:Proc. 4th Int. Conf. on Trends in Welding Research, TN, June 5–8, 1995, ASM INTERNATIONAL, Materials Park, OH, 1995, pp. 277–82.

    Google Scholar 

  23. S.W. Thompson:40th MWSP Conf. Proc., ISS, Warrendale, PA, 1998, pp. 663–73.

    Google Scholar 

  24. M. Mujahid, A.K. Lis, C.I. Garcia, and A.J. DeArdo:JMEPEG, 1998, vol. 7 (2), pp. 247–57.

    CAS  Google Scholar 

  25. A.D. Wilson, E.G. Hamburg, D.J. Colvin, S.W. Thompson, and G. Krauss:Proc. Microalloying ’88, ASM INTERNATIONAL, Metals Park, OH, 1988, pp. 259–76.

    Google Scholar 

  26. C.E. Cross, O. Grong, S. Liu, and J.F. Capes: inApplied Metallography, G.F. Vander Voort, ed., Van Nostrand Reinhold, New York, NY, 1986, pp. 197–210.

    Google Scholar 

  27. P.L. Harrison and R.A. Farrar:Int. Mater. Rev., 1989, vol. 34, pp. 35–51.

    CAS  Google Scholar 

  28. C. Thaulow, A.J. Paauw, and K. Guttormsen:Welding J. Res. Suppl., 1987, vol. 66, pp. 266s-79s.

    Google Scholar 

  29. S.W. Thompson and G. Krauss:Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1573–88.

    CAS  Google Scholar 

  30. G.R. Speich and T.M. Scoonover:Proc. Processing, Microstructure and Properties HSLA Steels, A.J. DeArdo, ed., TMS, Warrendale, PA, 1988, pp. 263–86.

    Google Scholar 

  31. D. Wenpu, F. Zuobao, and Y. Lang:Mater. Characterization, 1996, vol. 37, pp. 169–75.

    Article  CAS  Google Scholar 

  32. N.N. Rykalin:Berechnung der Wärmevorgänge beim Schweissen, VEB Verlag Technik, Berlin, 1957, pp. 68–105.

    Google Scholar 

  33. G.I. Rees and H.K.D.H. Bhadeshia:Mater. Sci. Technol., 1994, vol. 10, pp. 353–58.

    CAS  Google Scholar 

  34. H.K.D.H. Bhadeshia:Proc. 3rd Int. Conf. on Welding Research, ASM INTERNATIONAL, Materials Park, OH, 1992, pp. 213–22.

    Google Scholar 

  35. P.L. Harrison and R.A. Farrar:Int. Mater. Revs., 1989, vol. 34, pp. 35–51.

    CAS  Google Scholar 

  36. T. Abe, K. Tsukada, and I. Kozasu:Conf. Proc. HSLA Steels — Metallurgy and Application, Beijing, China, Nov. 4–8, 1985, ASM INTERNATIONAL, Materials Park, OH, 1986, pp. 103–11.

    Google Scholar 

  37. G. Krauss and A.R. Marder:Metall. Trans., 1971, vol. 2, pp. 2343–57.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shome, M., Mohanty, O.N. Continuous cooling transformation diagrams applicable to the heat-affected zone of HSLA-80 and HSLA-100 steels. Metall Mater Trans A 37, 2159–2169 (2006). https://doi.org/10.1007/BF02586136

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02586136

Keywords

Navigation