Skip to main content
Log in

The distance-dependence of the fission yeastade6-M26 marker effect in two-factor crosses

  • Original Paper
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Random spore analysis of crosses between a strain bearing theade6-M26 hotspot mutation and strains bearing otherade6 mutations was performed. Recombinant prototroph frequencies increase with increasing distance fromM26 for mutations both 5′ and 3′ ofM26. Maximum prototroph frequencies are obtained for mutations lying more than 700 nucleotides down-stream fromM26. Similar results are obtained for crosses with theade6-M375 control mutation, but the prototroph frequencies are lower. The factor of stimulation of recombination byM26 as compared to theM375 control (M26 marker effect) also displays distance-dependence. These results are discussed in the context of the mechanism ofM26 recombination, as well as in relation to recombination initiation, hybrid DNA formation, and mismatch repair atade6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alani E, Reenan RAG, Kolodner RD (1994) Interaction between mismatch repair and genetic recombination inSaccharomyces cerevisiae. Genetics 137:19–39

    PubMed  CAS  Google Scholar 

  • Bernardi F, Koller T, Thoma F (1991) Theade6 gene of the fission yeastSchizosaccharomyces pombe has the same chromatin structure in the chromosome and on plasmids. Yeast 7:547–558

    Article  PubMed  CAS  Google Scholar 

  • Grigg GW (1958) Competitive suppression and the detection of mutations in microbial populations. Aust J Biol Sci 11:69–84

    CAS  Google Scholar 

  • Grimm C, Kohli J, Murray J, Maundrell K (1988) Genetic engineering ofSchizosaccharomyces pombe: a system for gene disruption and replacement using theura4 gene as a selectable marker. Mol Gen Genet 215:81–86

    Article  PubMed  CAS  Google Scholar 

  • Grimm C, Bähler J, Kohli J (1994)M26 recombinational hotspot and physical conversion tract analysis in theade6 gene ofSchizosaccharomyces pombe. Genetics 135:41–51

    Google Scholar 

  • Gutz H (1971) Site-specific induction of gene conversion inSchizosaccharomyces pombe. Genetics 69:317–337

    Google Scholar 

  • Gutz H, Heslot H, Leupold U, Loprieno N (1974)Schizosaccharomyces pombe. In: King RC (ed) Handbook of genetics, vol 1. Plenum Press, New York, pp 395–446

    Google Scholar 

  • Heyer WD, Sipiczki M, Kohli J (1986) Replicating plasmids inSchizosaccharomyces pombe: improvement of symmetric segregation by a new genetic element. Mol Cell Biol 6:80–89

    PubMed  CAS  Google Scholar 

  • Munz P, Leupold U (1979) Gene conversion in nonsense suppressors ofSchizosaccharomyces pombe.I. The influence of the genetic background and of three mutant genes (rad2, mut1 andmut2) on the frequency of postmeiotic segregation. Mol Gen Genet 170:145–148

    Article  PubMed  CAS  Google Scholar 

  • Nicolas A, Petes TD (1994) Polarity of meiotic gene conversion in fungi: contrasting views. Experientia 50:242–252

    Article  PubMed  CAS  Google Scholar 

  • Ohta K, Shibata T, Nicolas A (1994) Changes in chromatin structure at recombination initiation sites during yeast meiosis. EMBO J 13:5754–5763

    PubMed  CAS  Google Scholar 

  • Orr-Weaver TL, Szostak JW (1985) Fungal recombination. Microbiol Rev 49:33–85

    PubMed  CAS  Google Scholar 

  • Ponticelli AS, Sena EP, Smith GR (1988) Genetic and physical analysis of the M26 recombination hotspot ofSchizosaccharomyces pombe. Genetics 114:347–361

    Google Scholar 

  • Ponticelli AS, Smith GR (1992) Chromosomal context dependence of a cukaryotic recombination hotspot. Proc Natl Acad Sci USA 89:227–231

    Article  PubMed  CAS  Google Scholar 

  • Rayssiguier C, Thaler DS, Radman M (1989) The barrier to recombination betweenEscherichia coli andSalmonella typhimurium is disrupted in mismatch-repair mutants. Nature 324: 396–401

    Article  Google Scholar 

  • Schär P, Kohli J (1993) Marker effects of G to C transversions on intragenic recombination and mismatch repair inSchizosaccharomyces pombe. Genetics 133:825–835

    PubMed  Google Scholar 

  • Schär P, Kohli J (1994) Preferential strand transfer and hybrid DNA formation at the recombination hotspotade6-M26 ofSchizosaccharomyces pombe. EMBO J 13:5212–5219

    PubMed  Google Scholar 

  • Schär P, Munz P, Kohli J (1993) Meiotic mismatch repair quantified on the basis of segregation patterns inSchizosaccharomyces pombe. Genetics 133:815–824

    PubMed  Google Scholar 

  • Schuchert P, Kohli J (1988) Theade6-M26 mutation ofSchizosaccharomyces pombe increases the frequency of crossing over. Genetics 119:507–515

    CAS  Google Scholar 

  • Schuchert P, Langsford M, Käslin E, Kohli J (1991) A specific DNA sequence is required for high frequency of recombination in theade6 gene of fission yeast. EMBO J 10:2157–2163

    PubMed  CAS  Google Scholar 

  • Smith GR (1994) Hotspots of homologous recombination. Experientia 50:234–242

    Article  PubMed  CAS  Google Scholar 

  • Szankasi P, Heyer WD, Schuchert P, Kohli J (1988) DNA sequence analysis of theade6 gene ofSchizosaccharomyces pombe. Wild-type and mutant alleles including the recombination hot spotede6-M26. J Mol Biol 204:917–925

    Article  PubMed  CAS  Google Scholar 

  • Virgin JB, Metzger J, Smith GR (1995) Active and inactive transplacement of theM26 recombination hotspot, inSchizosaccharomyces pombe. Genetics 141:33–48

    PubMed  CAS  Google Scholar 

  • Wahls WP, Smith GR (1993) TheM26 homologous recombination hotspot: sequences, factors and chromosomal context. In: Summer AT, Chandley AC (eds) Chromosomes today, vol. 11. Chapman and Hall, London, UK, pp 351–363

    Google Scholar 

  • Wahls WP, Smith GR (1994) A heteromeric protein that binds to a meiotic homologous recombination hot spot: correlation of binding and hotspot activity. Genes Dev 8:1693–1702

    PubMed  CAS  Google Scholar 

  • Wu TC, Lichten M (1994) Meiosis-induced double-strand break sites determined by yeast chromatin structure. Science 263:515–518

    PubMed  CAS  Google Scholar 

  • Zahn-Zabal M, Lehmann L, Kohli J (1995) Hotspots of recombination in fission yeast: inactivation of theM26 hotspot by deletion of theade6 promoter, and the novel hotspotura4-aim. Genetics 140:469–478

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by K. Wolf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zahn-Zabal, M., Kohli, J. The distance-dependence of the fission yeastade6-M26 marker effect in two-factor crosses. Curr Genet 29, 530–536 (1996). https://doi.org/10.1007/BF02426957

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02426957

Keywords

Navigation