Skip to main content
Log in

Sn(II)-Treated MoO3 as cathode material for rechargeable lithium batteries

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

We report on the synthesis and structural, thermal and electrochemical characterisation of reduced molybdenum oxides with layered α-MoO3 type structure. The samples have been prepared by reactions of various amounts of water-free tin dichloride with fine-particulated orthorhombic molybdenum trioxide in n-hexane (non-aqueous media) or in aqueous media, which yielded materials with different Sn:Mo ratio. XRD investigations of these materials proved that the crystal structure of the layered α-MoO3 has been maintained after the reduction process. No crystalline impurity phases (e.g. tin oxides) could be detected by XRD.

The tin-reduced samples exhibited a drastically improved cycling stability and capacity retention on cycling in 1 M LiClO4/propylene carbonate, i.e. the discharge capacities were well above 100 mAh g−1 after 20 cycles whereas the non-treated MoO3 (reference sample) has retained only about 45 mAh g−1. At higher cycle numbers (approx. cycle 100) the discharge capacity of the reduced molybdenum oxides stabilises at a level of approx. 100 mAh g−1. This significant improvement of the rechargeability may be related to improved electronic conductivity and/or higher structural stabilisation of the layered MoO3 structure either due to (i) a coating of the MoO3 particles with a protective thin layer of a tin containing compounds, and/or (ii) an amorphisation of the structure after reductive treatment. Further efforts of this study were devoted to a variation of the conductive carbon content in the electrode composition and to changes of cut-off voltages and current densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.O. Besenhard and R. Schöllhorn, J. Power Sources1, 267 (1976/77).

    Google Scholar 

  2. J.O. Besenhard, J. Heydecke and H.P. Fritz, Solid State Ionics6, 215 (1982).

    Article  CAS  Google Scholar 

  3. J.O. Besenhard, H. Mayer and R. Schöllhorn, Z. Naturforsch.31b, 907 (1976).

    CAS  Google Scholar 

  4. C. Julien and G.A. Nazari, Solid State Batteries: Materials Design and Optimization, Kluwer, Boston (1994).

  5. L. Capanella and G. Pistoia, J. Electrochem. Soc.118, 1905 (1971).

    Google Scholar 

  6. F. Dampier, J. Electrochem. Soc.121, 656 (1974).

    CAS  Google Scholar 

  7. N. Margalit, J. Electrochem. Soc.121, 1460 (1974).

    CAS  Google Scholar 

  8. Naoaki Kumagai, Nobuko Kumagai and K. Tanno J. Applied Electrochem.18, 857 (1988).

    CAS  Google Scholar 

  9. G. Andersson and A. Magneli, Acta Chim. Scand.4, 793 (1950).

    CAS  Google Scholar 

  10. R. Schollhörn, R. Kuhlmann and J.O. Besenhard, Mat. Res. Bull.11, 83 (1976).

    Google Scholar 

  11. J.P. Pereira-Ramos, N. Kumagai and N. Kumagai, J. Power Sources56(1), 87 (1995).

    CAS  Google Scholar 

  12. J.O. Besenhard, J. Heydecke, E. Wudy, H.P. Fritz and W. Foag, Solid State Ionics8, 61 (1983).

    Article  CAS  Google Scholar 

  13. C. Julien, G.A. Nazri, Solid State Ionics68, 111 (1994).

    CAS  Google Scholar 

  14. N. Anwar. C.A. Hogarth, Phys. Stat. Sol. (a)109, 469 (1988).

    CAS  Google Scholar 

  15. A.M. Hashim, G.H. Wrodnigg, J.H. Albering, M. Winter, J.O. Besenhard, Reduzierte Molybdän-Oxide als Kathodenmaterialien für Lithiumbatterien — “Soft Chemistry” Syntheses und Eigenschaften (“Reduced molybdenum oxides as cathode materials for lithium batteries soft chemistry synthesis and properties”) 10. Vortragstagung der Fachgruppe Festkörperchemie und Materialforschung "Anorganische Funktionsmaterialien", Münster, Germany, 27.–29. September 2000, Abstract A3.

  16. A.M. Hashim, G.H. Wrodnigg, M.H. Askar, J.O. Besenhard, M. Winter, J.H. Albering, Reduced molybdenum oxides as new cathode materials for rechargeable lithium batteries, 9. Österreichische Chemietage, 25.–27. September 2000, Innsbruck, Abstract PO-122.

  17. M. Yoshio, S. Inoue, M. Hyakutake, G. Piao and H. Nakamura, J. Power Sources34, 147 (1991).

    CAS  Google Scholar 

  18. A.M. Hashim, M.H. Askar, J.H. Albering, J.O. Besenhard, M. Winter, F. Hofer, manuscript in preparation.

  19. L. Kihlborg, Ark. Kemi,21, 357 (1963).

    CAS  Google Scholar 

  20. Y. Muraoki, J.C. Grenier, S. Petit and M. Pouchard, J. Solid State Science1, 133 (1999).

    Google Scholar 

  21. J. Cho, C.S. Kim and S.I. Yoo, Electrochemical and Solid State Letters3(8), 362 (2000).

    CAS  Google Scholar 

  22. C. Julien, A. Khelfa, O.M. Hussain, G.A. Nazri, J. of Crystal Growth156, 235 (1995).

    CAS  Google Scholar 

  23. T. Tsumura, M. Ingaki, Solid State Ionics104, 183 (1997).

    CAS  Google Scholar 

  24. Y. Iriyama, T. Abe, M. Inaba, Z. Ogumi Solid State Ionics135, 95 (2000).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. M. Hashim or J. O. Besenhard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashim, A.M., Wrodnigg, G.H., Askar, M.H. et al. Sn(II)-Treated MoO3 as cathode material for rechargeable lithium batteries. Ionics 8, 183–191 (2002). https://doi.org/10.1007/BF02376067

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02376067

Keywords

Navigation