Skip to main content
Log in

Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Mechanisms that are involved in the loss of capacity upon the cycling of electrochemical cells are discussed. The inherent instability of the electrochemical interface and the resultant geometrical changes are characteristic of electrodes in which the reactant is a pure element. On the other hand, decrepitation can play an important role in the case of polyphase electrodes in which significant changes in specific volume occur. A simple one-dimensional model is presented that shows the mechanism and the important parameters that are involved in particle fracture. It predicts that decrepitation will lead to a terminal particle size, as is found experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

9. References

  1. R.A. Huggins, J. Electrochem. Soc.122, 90C (1975).

    Google Scholar 

  2. R.A. Huggins and D. Elwell, J. Crystal Growth37, 159 (1977).

    CAS  Google Scholar 

  3. G. Deublein and R.A. Huggins, Solid State Ionics18/19, 1110 (1986).

    Article  Google Scholar 

  4. E. Peled, J. Electrochem. Soc.126, 2047 (1979).

    CAS  Google Scholar 

  5. J. Yamaki, in: Lithium Ion Batteries, (M. Wakihara and O. Yamamoto, Eds.) Wiley-VCH, 1998, p. 67.

  6. U. von Sacken, E. Nodwell and J.R. Dahn, Solid State Ionics69, 284 (1994).

    Google Scholar 

  7. R.A. Huggins, in: Space Electrochemical Research and Technology, NASA Conference Publication 2484 (1987), p. 179.

  8. R.A. Huggins, J. Power Sources26, 109 (1989).

    CAS  Google Scholar 

  9. R.A. Huggins, in: Fast Ion Transport in Solids, (B. Scrosati, A. Magistris, C.M. Mari and G. Mariotto, Eds.) Kluwer Academic Publishers, 1992, p. 143.

  10. R.A. Huggins, J. Power Sources81–82, 13 (1999).

    Google Scholar 

  11. R.A. Huggins, in: Handbook of Battery Materials, (J.O. Besenhard, Ed.) Wiley-VCH, 1999, p. 359.

  12. C.J. Wen and R.A. Huggins, J. Solid State Chem.35, 376 (1980).

    Article  CAS  Google Scholar 

  13. C.J. Wen and R.A. Huggins, J. Electrochem. Soc.128, 1181 (1981).

    CAS  Google Scholar 

  14. J. Wang, I.D. Raistrick and R.A. Huggins, J. Electrochem. Soc.133, 457 (1986).

    CAS  Google Scholar 

  15. A. Anani, S. Crouch-Baker and R.A. Huggins, in: Proc. Symp. on Lithium Batteries, (A.N. Dey, Ed.) Electrochem. Soc., 1987, p. 365.

  16. A. Anani, S. Crouch-Baker and R.A. Huggins, J. Electrochem. Soc.134, 3098 (1987).

    CAS  Google Scholar 

  17. J.A. Ferrante and R.A. Huggins, unpublished results (1989).

  18. J. Yang, M. Winter and J.O. Besenhard, Solid State Ionics90, 281 (1996).

    Article  CAS  Google Scholar 

  19. T. Nohma, S. Yoshimura, K. Nishio and T. Saito, in: Lithium Batteries; New Materials, Developments and Perspectives, (G. Pistoia, Ed.) Elsevier, 1994, p. 417.

  20. K. Nishio and N. Furukawa, in: Handbook of Battery Materials, (J.O. Besenhard, Ed.) Wiley-VCH, 1999, p. 19.

  21. W.D. Nix, “Mechanical Properties of Thin Films”, Metall. Trans.20A, 2217 (1989).

    CAS  Google Scholar 

  22. S.P. Baker and W.D. Nix, “Mechanical Properties of Thin Films on Substrates”, in: Optical Thin Films III: New Developments, Proc. SPIE,1323, 263–276 (1990).

    Google Scholar 

  23. L.B. Freund and W.D. Nix, “A Critical Thickness Condition for a Strained Compliant Substrate/Epitaxial Film System”, Applied Physics Letters69, 173–175 (1996).

    Article  CAS  Google Scholar 

  24. L.B. Freund, J.A. Floro, E. Chason, “Extensions of the Stoney formula for substrate curvature to configurations with thin substrates or large deformations”, Applied Physics Letters74, 1987–1989 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huggins, R.A., Nix, W.D. Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems. Ionics 6, 57–63 (2000). https://doi.org/10.1007/BF02375547

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02375547

Keywords

Navigation