Skip to main content
Log in

Selection on the male hemizygous genotype in arrhenotokous insects and mites

  • Published:
Entomophaga Aims and scope Submit manuscript

Abstract

Arrhenotokously reproducing Hymenoptera and Acarina include many important natural enemies. This reproductive system offers the opportunity of selection on hemizygous (♂ ♂), with the attendant advantages of an unmasked genotype fully exposed to selection, in creased frequency of genotypes expressing rare genes, and enhanced discrimination of characters, in all-♂ populations produced by virgin (♀ ♀). Increased selection intensity and reduced genetic drift may offer additional advantages. The method is limited to characters displayed by (♂ ♂), and may require labor-intensive techniques and species-specific research. The method has been shown to be practicable withAphytis holoxanthus DeBach (Hymenoptera: Aphelinidae), an important parasite of the Florida red scale,Chrysomphalus aonidum (L.) (Homoptera: Diaspididae).

Résumé

Les Hyménoptères et les Acariens à reproduction arrhénotoque renferment beaucoup d'ennemis naturels importants. Ce système de reproduction offre l'occasion de sélection sur les mâles hémizygotes, avec les avantages afférents d'un génotype non masqué totalement exposé à la sélection, d'une fréquence augmentée de génotypes exprimant des gènes rares et d'une discrimination accrue de caractères dans les populations mâles produites par les femelles vierges. Une intensité de sélection amplifiée et une dérive génétique réduite peuvent offrir des avantages supplémentaires. La méthode est limitée aux caractères affichés par les mâles et peut réclamer des techniques intensives de laboratoire et une recherche d'espèce spécifique. On a montré que cette méthode est utilisable avecAphytis holoxanthus DeBach (Hym.: Aphelinidae), parasite important du Pou de Floride,Chrysomphalus aonidum (L.) (Hom.: Diaspididae).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adbelrahman, I. — 1973. Toxicity of malathion to the natural enemies of California red scaleAonidiella aurantii (Mask.) —Austral. J. Agric. Res., 24, 119–133.

    Google Scholar 

  • Adams, C. H. &Cross, W. H. — 1967. Insecticide resistance inBracon mellitor, a parasite of the boll weevil. —J. Econ. Entomol., 60, 1016–1020.

    CAS  Google Scholar 

  • Ashley, T. R. D., Gonzales, D. &Leigh, D. E. — 1974. Selection and hybridization ofTrichogramma. —Environ. Entomol., 3, 43–48.

    Google Scholar 

  • Avidov, Z., Balshin, M. &Gerson, U. — 1970. Studies onAphytis coheni, a parasite of the California red scale in Israel. —Entomophaga, 15, 191–207.

    Article  Google Scholar 

  • Brown, A. W. A. — 1971. Pest resistance to pesticides. In: Pesticides in the Environment. (R. White-Stevens, ed.) —Marcel Decker, New York, 457–552.

    Google Scholar 

  • Bull, J. J. — 1983. Evolution of Sex Determining Mechanisms. —Benjamin/Cummings, London, 316 pp.

    Google Scholar 

  • Busvine, J. R. — 1971. A critical review of the techniques for testing insecticides. —Commonw. Agric. Bur., Farnham Royal, Slough, 345 pp.

    Google Scholar 

  • Croft, B. A. &Strickler, K. — 1983. Natural enemy resistance to pesticides: Documentation, characterization theory and application. In: Pest Resistance to Pesticides (G. P. Georghiou &T. Saito, eds). —Plenum Press, New-York, 669–702.

    Google Scholar 

  • Crow, J. F. &Kimura, M. — 1970. An Introduction to Population Genetic Theory. —Harper & Row, New-York, 591 pp.

    Google Scholar 

  • Crozier, H. R. — 1975. Insecta Hymenoptera. Chap. 7. In: Animal Cytogenetics Vol. 3 (B. John ed.) — Gebrueder Borntraeger, Berlin.

    Google Scholar 

  • Crozier, H. R. — 1976. Why male-haploid and sex-linked genetic systems seem to have unusually sexlimited mutational genetic loads. —Evolution, 30, 623–624.

    Google Scholar 

  • Crozier, H. R. — 1977. Evolutionary genetics of the Hymenoptera. —Annu. Rev. Entomol., 22, 263–288.

    Article  Google Scholar 

  • DeBach, P. — 1958. Selective breeding to improve adaptations of parasitic insects. —Proc. 10th Internat. Congr. Entomol. (Montreal 1956), 4, 759–768.

    Google Scholar 

  • DeBach, P. &White, E. B. — 1962. Irradiated parasitic wasps. The effect on progeny production and sex ratio. —J. of Heredity, 53, 271–276.

    Google Scholar 

  • Doutt, R. L. — 1959. The biology of parasitic Hymenoptera. —Annu. Rev. Entomol., 4, 161–182.

    Article  Google Scholar 

  • Falconer, D. S. — 1981. Introduction to Quantitative Genetics, 2nd edition —Longman, London 340 pp.

    Google Scholar 

  • Flanders, S. E. — 1943. The role of mating in the reproduction of parasitic Hymenoptera. —J. Econ. Entomol., 36, 802–803.

    Google Scholar 

  • Georghiou, G. P. — 1972. The evolution of resistance to pesticides. —Annu. Rev. Ecol. Syst., 3, 133–168.

    Article  CAS  Google Scholar 

  • Georghiou, G. P. & Taylor, C. E. — 1976. Pesticide resistance as an evolutionary phenomenon. —Proc. 15th Congr. Entomol. (Washington, D.C.), 759–785.

  • Gordh, G. &DeBach, P. — 1976. Male insemination potential inAphytis lingnanensis. —Can. Entomol., 108, 583–589.

    Google Scholar 

  • Hartl, D. L. — 1971. Some aspects of natural selection in arrhenotokous populations. —Amer. Zool., 11, 309–325.

    Google Scholar 

  • Hartl, D. L. &Brown, S. W. — 1970. The origin of male-haploid genetic systems and their expected sex ratio. —Theor. Popul. Biol., 1, 164–190.

    Google Scholar 

  • Havron, A., Rosen, D. &Rössler, Y. — 1987. A test method for pesticide tolerance in minute parasitic Hymenoptera. —Entomophaga, 32, 83–95.

    CAS  Google Scholar 

  • Helle, W. — 1965. Resistance in the Acarina: Mites. —Advances in Acarology, 3, 71–93.

    Google Scholar 

  • Helle, W. — 1968. Parthenogenesis and insecticide resistance. —Meded. Rijksfac. Landbouwwet. Gent., 33, 621–628.

    Google Scholar 

  • Helle, W. &Overmeer, W. P. J. — 1973. Variability in the tetranychid mites. —Annu. Rev. Entomol., 18, 97–120.

    Article  Google Scholar 

  • Hoy, M. A. — 1976. Genetic improvement of insects: Fact or fantasy. —Environ. Entomol., 5, 833–839.

    Google Scholar 

  • Hoy, M. A. — 1979. The potential for genetic improvement of predators for pest management programs. In: Genetics in Relation to Insect Management. (M. A. Hoy & J. J. McKelvey, eds.) —Rockefeller Foundation Press, 106–115.

  • Kerr, W. E. — 1975. Evalution of the population structure in bees. —Genetics, 79 (Suppl.), 73–84.

    Google Scholar 

  • Kerr, W. E. — 1976. Population genetic studies in bees, 2: Sex limited genes. —Evolution, 30, 94–99.

    Google Scholar 

  • Li, C. C. — 1976. First Course in Population Genetics. —Boxwood Press, Pacific Grove, Calif., 631 pp.

    Google Scholar 

  • Mackauer, M. — 1976. Genetic problems in the production of biological control agents. —Annu. Rev. Entomol., 21, 369–385.

    Article  Google Scholar 

  • Mayr, E. — 1970. Populations, Species and Evolution. —Harvard Univ. Press, Cambridge, Mass., 453 pp.

    Google Scholar 

  • Muller, H. J. — 1958. How much is evolution accelerated by sexual reproduction? —Anat. Rec., 132, 480–481.

    Google Scholar 

  • Pielou, D. P. &Glasser, R. F. — 1951. Selection for DDT resistance in a beneficial parasite,Macrocentrus ancylivorus Rohwer. —Can. J. Zool., 29, 90–101.

    Google Scholar 

  • Plapp, F. W. — 1970. On the molecular biology of insecticide resistance. In: Biochemical Toxicology of insecticides. (R. D. O'Brien &I. Yamamoto, eds.) —Academic Press, London, New-York, 179–192.

    Google Scholar 

  • Rosen, D. &DeBach, P. — 1979. Species ofAphytis of the World (Hymenoptera: Aphelinidae). —Israel Univ. Press, Jerusalem &W. Junk, The Hague, 801 pp.

    Google Scholar 

  • White, E. B., DeBach, P. &Garber, M. J. — 1970. Artificial selection for genetic adaptation to temperature extremes inAphytis lingnanensis Compere (Hymenoptera: Aphelinidae). —Hilgardia, 40, 161–192.

    Google Scholar 

  • White, M. J. D. — 1973. Animal Cytology and Evolution. —Cambridge Univ. Press. London, New York, 961 pp.

    Google Scholar 

  • Whiting, A. — 1967. The biology of the parasitic waspMormoniella vitripennis (=Nasonia brevicornis) (Walker) [Hymenoptera: Pteromalidae]. —Quart. Rev. Biol., 42, 333–406.

    Article  Google Scholar 

  • Whiting, P. W. — 1945. The evolution of male haploidy. —Quart. Rev. Biol., 20, 231–260.

    Google Scholar 

  • Wilkes, A. — 1942. The influence of selection on the preferendum of a chalcid [Microplectron (=Dahlbominus) fuscipennis (Zett.)], and its significance to the biological control of an insect pest. —Proc. Roy. Soc. London, Ser B 130, 400–415.

    Google Scholar 

  • Williams, G. C. — 1975. Sex and Evolution. —Princeton Univ. Press, Princeton, 200 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Havron, A., Rosen, D., Rössler, Y. et al. Selection on the male hemizygous genotype in arrhenotokous insects and mites. Entomophaga 32, 261–268 (1987). https://doi.org/10.1007/BF02373249

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02373249

Key-words

Mots Clefs

Navigation