Skip to main content
Log in

Molecular genetics and evolution of stomach and nonstomach lysozymes in the hoatzin

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Multiple genes of the hoatzin encoding stomach lysozyme c and closely related members of this calcium-binding lysozyme c group were cloned from a genomic DNA library and sequenced. There are a minimum of five genes represented among these sequences that encode two distinct groups of protein sequences. One group of three genes corresponds to the stomach lysozyme amino acid sequences, and the remaining genes encode predicted proteins that are more basic in character and share several sequence identities with the pigeon egg-white lysozyme rather than with the hoatzin stomach lysozymes. Despite these structural similarities between some of the hoatzin gene products and the pigeon lysozyme, phylogenetic analyses indicate that all of the hoatzin sequences are closely related to one another. This is borne out by the relatively small genetic distances even in the intronic regions, which are not subject to the selective pressures operating on the coding regions of the stomach lysozymes. These results suggest that multiple gene duplication events have occurred during the evolution of hoatzin lysozymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avise JC, Nelson WS, Sibley CG (1994) Why one-kilobase sequences from mitochondrial DNA fail to solve the hoatzin phylogenetic enigma. Mol Phylo Evol 3:175–184

    CAS  Google Scholar 

  • Dautigny A, Prager EM, Pham-Dinh D, Jollès J, Pakdel F, Grinde B, Jollès P (1991) cDNA and amino acid sequences of rainbow trout (Oncorhynchus mykiss) lysozymes and their implications for the evolution of lysozyme and lactalbumin. J Mol Evol 32:187–198

    CAS  PubMed  Google Scholar 

  • Dobson DE, Prager EM, Wilson AC (1984) Stomach lysozymes of ruminants. I. Distribution and catalytic properties. J Biol Chem 259:11607–11616

    CAS  PubMed  Google Scholar 

  • Gilbert W (1978) Why genes in pieces? Nature 271:501

    Article  CAS  PubMed  Google Scholar 

  • Grajal A, Strahl SD, Parra R, Dominguez MG, Neher A (1989) Foregut fermentation in the hoatzin, a neotropical leaf-eating bird. Science 245:1236–1238

    CAS  Google Scholar 

  • Haldane JBS (1932) The causes of evolution. Harper & Row, New York

    Google Scholar 

  • Hedges SB, Simmons MD, van Dijk MAM, Caspers G-J, de Jong WW, Sibley CG (1995) Phylogenetic relationships of the hoatzin, an enigmatic South American bird. Proc Natl Acad Sci USA 92: 11662–11665

    CAS  PubMed  Google Scholar 

  • Irwin DM (1995) Evolution of the bovine lysozyme gene family: changes in gene expression and reversion of function. J Mol Evol 41:299–312

    CAS  PubMed  Google Scholar 

  • Irwin DM, Sidow A, White RT, Wilson AC (1989) Multiple genes for ruminant lysozymes. In: Smith-Gill SJ, Sercarz EE (eds) The immune response to structurally defined proteins: the lysozyme model. Adenine Press, Schenectady, NY, pp 73–85

    Google Scholar 

  • Irwin DM, Prager EM, Wilson AC (1992) Evolutionary genetics of ruminant lysozymes. Anim Genet 23:193–202

    CAS  PubMed  Google Scholar 

  • Irwin DM, White RT, Wilson AC (1993) Characterization of the cow stomach lysozyme genes: repetitive DNA and concerted evolution. J Mol Evol 37:355–366

    Article  CAS  PubMed  Google Scholar 

  • Irwin DM, Yu M, Wen Y (1996) Isolation and characterization of vertebrate lysozyme genes. In: Jolles P (ed) Lysozymes: model enzymes in biochemistry and biology. Birkhäuser Verlag, Basel, pp 225–242

    Google Scholar 

  • Irwin DM, Wilson AC (1989) Multiple cDNA sequences and the evolution of bovine stomach lysozyme. J Biol Chem 264:11387–11393

    CAS  PubMed  Google Scholar 

  • Irwin DM, Wilson AC (1990) Concerted evolution of ruminant stomach lysozymes. Characterization of lysozyme cDNA clones from sheep and deer. J Biol Chem 265:4944–4952

    CAS  PubMed  Google Scholar 

  • Jung A, Sippel AE, Grez M, Schütz G (1980) Exons encode functional and structural units of chicken lysozyme. Proc Natl Acad Sci USA 77:5759–5763

    CAS  PubMed  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Kornegay JR (1994) Evolution of avian lysozymes. PhD thesis, University of California, Berkeley

    Google Scholar 

  • Komegay JR, Schilling JW, Wilson AC (1994) Molecular adaptation of a leaf-eating bird: stomach lysozyme of the hoatzin. Mol Biol Evol 11:921–928

    Google Scholar 

  • Li W-H, Graut D (1991) Fundamentals of molecular evolution. Sinauer, Sunderland, MA

    Google Scholar 

  • Li W-H, Tanimura M, Sharp PM (1987) An evaluation of the molecular clock hypothesis using mammalian DNA sequences. J Mol Evol 25:330–342

    CAS  PubMed  Google Scholar 

  • Maddison WP, Maddison DR (1992) MacClade: analysis of phylogeny and character evolution, version 3.0. Sinauer, Sunderland, MA

    Google Scholar 

  • Miller AH (1953) A fossil hoatzin from the Miocene of Colombia. Auk 70:484–489

    Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer-Verlag, Berlin

    Google Scholar 

  • Olson SL (1985) The fossil record of birds. Avian Biol 8:79–238

    Google Scholar 

  • Pahud J-J, Widmer F (1982) Calf rennet lysozyme. Biochem J 201: 661–664

    CAS  PubMed  Google Scholar 

  • Prager EM (1996) Adaptive evolution of lysozyme: changes in amino acid sequence, regulation of expression, and gene number. In: Jollès P (ed) Lysozymes: model enzymes in biochemistry and biology. Birkhäuser Verlag, Basel, pp 323–346

    Google Scholar 

  • Prager EM, Jollès, P (1996) Animal lysozymesc andg: an overview. In: Jolles P (ed) Lysozymes: model enzymes in biochemistry and biology. Birkhäuser Verlag, Basel, pp 9–31

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Satta Y, O'hUigin C, Takahata N, Klein J (1993) The synonymous substitution rate of the major histocompatibility complex loci in primates. Proc Natl Acad Sci USA 90:7480–7484

    CAS  PubMed  Google Scholar 

  • Sibley CG, Ahlquist JE (1990) Phylogeny and classification of birds. A study in molecular evolution. Yale University Press, New Haven, CT

    Google Scholar 

  • Stewart C-B, Schilling JW, Wilson AC (1987) Adaptive evolution in the stomach lysozymes of foregut fermenters. Nature 330:401–404

    CAS  PubMed  Google Scholar 

  • Swanson KW, Irwin DM, Wilson AC (1991) Stomach lysozyme gene of the langur monkey: tests for convergence and positive selection. J Mol Evol 33:418–425

    Article  CAS  PubMed  Google Scholar 

  • Swofford DL (1993) PAUP: phylogenetic analysis using parsimony, version 3.1.l. Illinois, Natural History Survey, Champaign, IL

    Google Scholar 

  • Wilson AC, Ochman H, Prager EM (1987) Molecular time scale for evolution. Trends Genet 3:241–247

    Article  CAS  Google Scholar 

  • Wistow G (1993) Lens crystallins: gene recruitment and evolutionary dynamism. Trends Biochem Sci 18:301–306

    Article  CAS  PubMed  Google Scholar 

  • Wolfe KH, Sharp PM, Li W-H (1989) Mutation rates differ among regions of the mammalian genome. Nature 337:283–285

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kornegay, J.R. Molecular genetics and evolution of stomach and nonstomach lysozymes in the hoatzin. J Mol Evol 42, 676–684 (1996). https://doi.org/10.1007/BF02338801

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02338801

Key words

Navigation