Skip to main content
Log in

Transport theory of a totally reflected parallelepiped reactor

  • Published:
Meccanica Aims and scope Submit manuscript

Sommario

Si presenta un'applicazione della equazione lineare integrale di Boltzmann per determinare la distribuzione del flusso totale stazionario per neutroni monoenergetici in un reattore parallelepipedo riflesso totalmente, dove sia il nocciolo sia il riflettore sono fatti di materiali diffondenti e moltiplicanti isotropicamente. Le proprietà generali della soluzione per il flusso totale sono discusse nel contesto di una teoria di equazioni integrali lineari nello spazio di Lebesgue Lp. Una versione pratica della soluzione valida in tutto il reattore è proposta in termini di una espansione polinomiale.

Summary

An application of the linear integral Boltzmann equation for determining the stationary total flux distribution for monoenergetic neutrons in a totally reflected parallelepiped reactor — where both core and reflector are made by isotropically scattering and multiplying materials — is here presented. The general properties of the solution for the total flux are discussed in the context of the theory of linear integral equations in a Le-besgue space Lp. A practical version of the solution, holding in the whole reactor, is proposed in terms of a polynomials expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Garretson G., andLeonard A.,Journal of Mathematical Physics, 11, 725, (1970).

    Google Scholar 

  2. Boffi V. C., andPremuda F., “Solution to the Boltzmann equation for monoenergetic neutrons in a finite sphere,” CNEN Report, RT/FI (70) 40, Rome, 1970.

  3. Premuda F.,Transport theory and statistical physics, 1 (4), 329 1971.

    MATH  MathSciNet  Google Scholar 

  4. Boffi V. C., andMolinari V. G.,Transport theory and statistical physics, 1 (4), 313, 1971.

    MathSciNet  Google Scholar 

  5. Boffi V. C., Molinari V. G., Premuda F., andTrombetti T., “Transport theory of monoenergetic neutrons in finite convex bodies,” CNEN Report, RT/FI (72) 34, Rome, 1972.

  6. Boffi V. C., Premuda F., andSpiga G.,Journal of Mathematical Physics,14, 346, 1973.

    MathSciNet  Google Scholar 

  7. Boffi V. C., andSpiga G., “Linear integral transformations generated by the three-dimensional neutron transport kernel,”Journal of Mathematical Physics, in press.

  8. Boffi V. C., andSpiga G., “Banach-adjoint transformations in three-dimensional neutron transport theory.” To be published.

  9. Premuda F., andSpiga G., “Positivity, dominance and uniform continuity of solution to the neutron integral Boltzmann equation in three-dimensional critical systems.” To be published.

  10. Premuda F., “Solution for the integral neutron transport equation by direct decomposition of its kernel,” CNEN Report, RT/FI (70) 27, Rome, 1970.

  11. Weinberg A. M., andWigner E. P.,The Physical Theory of Neutron Chain Reactors, The University of Chicago Press, 1958.

  12. Glasstone S., andEdlund M. C.,The Elements of Nuclear Reactor Theory, Van Nostrand, Princeton, 1952.

    Google Scholar 

  13. Zaanen A. C.,Linear Analysis, North-Holland, Amsterdam, 1964.

    Google Scholar 

  14. Tricomi F. G.,Istituzioni di Analisi Superiore, Cedam, Padova, 1970.

    Google Scholar 

  15. Premuda F., “Transport theory of a monoenergetic spherical reactor with reflector,” CNEN Report, RT/FI (72) 18, Rome, 1972.

  16. Smith O. J., andSiewert C. E.,Journal of Nuclear Energy, 22, 579, 1968.

    Article  Google Scholar 

  17. Doctor R. D., andErdmann R. C.,Transactions of American Nuclear Society, 11, 553, 1968.

    Google Scholar 

  18. Asaoka T.,Journal of Nuclear Energy, 32, 99, 1968.

    Google Scholar 

  19. Lorenzutta S., andPremuda F.,Transport theory and statistical physics, 3 (1), 29, 1973.

    MathSciNet  Google Scholar 

  20. Cupini E., De Matteis A., Premuda F., andTrombetti T., “Numerical applications of a new approach to the solution of the neutron transport equation,” CNEN Report RT/FI (69) 45, Rome, 1969.

  21. Mikhlin S. G.,Integral Equations, Pergamon Press, London, 1957.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prelati, G.P., Spiga, G. Transport theory of a totally reflected parallelepiped reactor. Meccanica 10, 128–134 (1975). https://doi.org/10.1007/BF02314751

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02314751

Keywords

Navigation