Skip to main content
Log in

Embryonic transcriptional activation of aXenopus cytoskeletal actin gene does not require a serum response element

  • Published:
Roux's archives of developmental biology Aims and scope Submit manuscript

Summary

The Serum Response Element (SRE) is a sequence motif which activates transcription of certain genes in response to factors that stimulate cell proliferation. This motif is found in the promoter of aXenopus laevis cytoskeletal actin gene, which is transcriptionally activated very early in embryonic development. We tested whether the SRE plays a role in the developmentally-timed transcriptional activation of this gene by constructing an SRE replacement mutant and studying its transcription after microinjection intoXenopus embryos. Normal amounts of actin mRNA are transcribed at the normal time in development from this mutant, suggesting that the SRE is not the sole determinant of temporal specificity of actin gene transcription in the embryo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bachvarova R, Davidson EH, Allfrey VG, Mirsky AE (1966) Activation of RNA synthesis associated with gastrulation. Proc Natl Acad Sci USA 55:358–365

    PubMed  Google Scholar 

  • Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523

    PubMed  Google Scholar 

  • Brennan S (1990) Transcription of injected and endogenous cytoskeletal actin genes during early embryonic development inXenopus laevis. Differentiation (in press)

  • Dawid IB, Sargent TD, Rosa F (1990) The Role of Growth Factors in Embryonic Induction in Amphibians. In: Nilsen-Hamilton (ed) Current Topics in Developmental Biology. Academic Press, San Diego (in press)

    Google Scholar 

  • Endean DJ, Smithies O (1989) Replication of plasmid DNA in fertilizedXenopus eggs is sensitive to both the topology and size of the injected template. Chromosoma 97:307–314

    Article  PubMed  Google Scholar 

  • Etkin LD (1988) Regulation of the mid-blastula transition in amphibians. In: Browder LW (ed) Developmental biology: a comprehensive synthesis, vol 5. Plenum Press, New York, pp 209–225

    Google Scholar 

  • Fu Y, Hosokawa K, Shiokawa K (1989) Expression of circular and linearized bacterial chloramphenicol acetyl transferase genes with or without viral promoters after injection into fertilized eggs, unfertilized eggs and oocytes ofXenopus laevis. Roux's Arch Dev Biol 198:148–156

    Google Scholar 

  • Greenberg ME, Ziff EB (1984) Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature (Lond) 311:433–438

    Article  Google Scholar 

  • Gurdon JB (1977) Methods for nuclear transplantation in Amphibia. In: Stein G, Stein J, Kleinsmith LJ (eds) Methods in cell biology, vol 16. Academic Press, New York, pp 125–139

    Google Scholar 

  • Gurdon JB, Fairman S, Mohun TJ, Brennan S (1985) Activation of mucle-specific actin genes inXenopus development by an induction between animal and vegetal cells of a blastula. Cell 41:913–922

    Article  PubMed  Google Scholar 

  • Gurdon JB, Mohun TJ, Sharpe CR, Taylor MV (1989) Embryonic induction and muscle gene activation. Trends Genet 5:51–56

    Article  PubMed  Google Scholar 

  • Hanahan D (1983) Studies on transformation ofEscherichia coli with plasmids. J Mol Biol 166:557–580

    PubMed  Google Scholar 

  • Jonas EA, Snape AM, Sargent TD (1989) Transcriptional regulation of aXenopus embryonic epidermal keratin gene. Development 106:399–405

    PubMed  Google Scholar 

  • Kimelman D, Kirschner M, Scherson T (1987) The events of the midblastula transition inXenopus are regulated by changes in the cell cycle. Cell 48:399–407

    Article  PubMed  Google Scholar 

  • Krieg PA, Melton DA (1985) Developmental activation of a gastrula-specific gene injected into fertilizedXenopus eggs. EMBO J 4:3463–3471

    PubMed  Google Scholar 

  • Krieg PA, Melton DA (1987a) An enhancer responsible for activating transcription at the midblastula transition inXenopus development. Proc Natl Acad Sci USA 84:2331–2335

    PubMed  Google Scholar 

  • Krieg PA, Melton DA (1987b) In vitro RNA synthesis with SP6 RNA polymerase. In: Wu R (ed) Methods in enzymology, vol 155. Academic Press, San Diego, pp 397–415

    Google Scholar 

  • Kunkel TA, Roberts JD, Zakour RA (1987) Rapid and efficient site-specific mutagenesis without phenotypic selection. In: Wu R, Grossman L (eds) Methods in enzymology, vol 154. Academic Press, San Diego, pp 367–382

    Google Scholar 

  • Laskey R (1980) The use of intensifying screens or organic scintillators for visualizing radioactive molecules resolved by gel electrophoresis. In: Grossman L, Moldave K (eds) Methods in enzymology, vol 65. Academic Press, New York, pp 363–371

    Google Scholar 

  • Maniatis T, Goodbourn S, Fischer JA (1987) Regulation of inducible and tissue-specific gene expression. Science 236:1237–1245

    PubMed  Google Scholar 

  • Melton DA, Krieg PA, Rebagliati MR, Maniatis T, Zinn K, Green MR (1984) Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucl Acids Res 12:7035–7056

    PubMed  Google Scholar 

  • Minty A, Kedes L (1986) Upstream regions of the human cardiac actin gene that modulate its transcription in muscle cells: Presence of an evolutionarily conserved repeated motif. Mol Cell Biol 6:2125–2136

    PubMed  Google Scholar 

  • Mohun T, Brennan S, Dathan N, Fairman S, Gurdon JB (1984) Cell type-specific activation of actin genes in the early amphibian embryo. Nature 311:716–721

    Article  PubMed  Google Scholar 

  • Mohun TJ, Garrett N (1987) An amphibian cytoskeletal-type actin gene is expressed exclusively in muscle tissue. Development 101:393–402

    PubMed  Google Scholar 

  • Mohun TJ, Garrett N, Treisman R (1987)Xenopus cytoskeletal actin and human c-fos gene promoters share a conserved protein-binding site. EMBO J 6:667–673

    PubMed  Google Scholar 

  • Mohun TJ, Taylor MV, Garrett N, Gurdon JB (1989) The CArG promoter sequence is necessary for muscle-specific transcription of the cardiac actin gene inXenopus embryos. EMBO J 8:1153–1161

    PubMed  Google Scholar 

  • Newport J, Kirschner M (1982a) A major developmental transition in earlyXenopus embryos: I. Characterization and timing of cellular changes at the midblastula stage. Cell 30:675–686

    Article  PubMed  Google Scholar 

  • Newport J, Kirschner M (1982b) A major developmental transition in earlyXenopus embryos: II. Control of the onset of transcription. Cell 30:687–696

    Article  PubMed  Google Scholar 

  • Nieuwkoop PD, Faber J (1967) Normal Table ofXenopus laevis (Daudin), second edition. North Holland, Amsterdam

    Google Scholar 

  • Rosa F (1989) Mix. 1, a homeobox mRNA inducible by mesoderm inducers, is expressed mostly in the presumptive endodermal cells ofXenopus embryos. Cell 57:965–974

    Article  PubMed  Google Scholar 

  • Russell M, Kidd, S, Kelley MR (1986) An improved filamentous helper phage for generating single-stranded plasmid DNA. Gene 45:333–338

    Article  PubMed  Google Scholar 

  • Sheng M, Dougan ST, McFadden G, Greenberg ME (1988) Calcium and growth factor pathways of c-fos transcriptional activation require distinct upstream regulatory sequences. Mol Cell Biol 8:2787–2796

    PubMed  Google Scholar 

  • Shiokawa K, Misumi, Y, Tashiro K, Nakakura N, Yamana K, Oh-uchida M (1989) Changes in the patterns of RNA synthesis in early embryogenesis ofXenopus laevis. Cell Differ Devel 28:17–26

    Article  Google Scholar 

  • Taylor M, Treisman R, Garret N, Mohun T (1989) Muscle-specific (CArG) and serum-responsive (SRE) promoter elements are functionally interchangeable inXenopus embryos and mouse fibroblasts. Development 106:67–78

    PubMed  Google Scholar 

  • Treisman R (1985) Transient accumulation of c-fos RNA following serum stimulation requires a conserved 5′ element and c-fos 3′ sequences. Cell 42:889–902

    Article  PubMed  Google Scholar 

  • Tullis RH, Rubin H (1980) Calcium protects DNase I from Proteinase K: A new method for the removal of contaminating RNase from DNase I. Anal Biochem 107:260–264

    Article  PubMed  Google Scholar 

  • Whitman M, Melton DA (1989) Growth factors in early embryogenesis. Ann Rev Cell Biol 5:93–117

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brennan, S., Savage, R. Embryonic transcriptional activation of aXenopus cytoskeletal actin gene does not require a serum response element. Roux's Arch Dev Biol 199, 89–96 (1990). https://doi.org/10.1007/BF02029555

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02029555

Key words

Navigation