Skip to main content
Log in

Ethanol from cellulose

  • Conversion of Biomass to Fuel and Chemical Raw Material
  • Published:
Experientia Aims and scope Submit manuscript

Summary

An excess of organic waste, containing up to 60% cellulose and hemicellulose is produced worldwide. The conversion of this cellulosic material to ethanol is discussed: The two-step process consisting of a hydrolysis step to glucose and the subsequent fermentation by yeasts; and the one-step process, a fermentation of the cellulose by the anaerobic thermophileClostridium thermocellum, or by a thermophilic, anaerobic, defined mixed culture. The use of the latter seems to be very feasible., To achieve an economic process, it is suggested to combine this approach with a thermophilic fermentation of the effluent and/or stillage obtained to produce methane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Finnerty, in: Microbial Energy Conversion, p. 83. Ed. H. G. Schlegel and J. Barnea. Erich Golze KG, Göttingen 1976.

    Google Scholar 

  2. B. Berg, Archs Microbiol.118, 61 (1978).

    Article  CAS  Google Scholar 

  3. L. A. Spano, in: Microbial Energy Conversion p. 157. Ed. H. G. Schlegel and J. Barnea. Erich Goltze KG, Göttingen 1976.

    Google Scholar 

  4. H. Sahm, in: Rothenburger Symposium, p. 75. Braun AG, Melsungen 1978.

    Google Scholar 

  5. The National Biomass Program, 3rd Annual Biomass Energy System Conference Proceedings, SERI/TP 33-285 (1979).

  6. G. Halliwell, Prog. ind. Microbiol.15 1 (1979).

    CAS  Google Scholar 

  7. T. K. Ghose, in: Bioconversion of Cellulosic Substances into Energy, Chemicals and Microbial Protein, p. 599. New Delhi 1977.

  8. R. E. Hungate, The Rumen and its Microbes. Academic Press, New York 1967.

    Google Scholar 

  9. M. Linko, in: Microbiology applied to Biotechnology; Dechema Monographie No. 83, p. 209, Verlag Chemie, Weinheim/New York 1979.

    Google Scholar 

  10. A. E. Humphrey, A. Moreira, W. Armiger and D. Zabriskie, Biotech. Bioengng Symp.7, 45 (1977).

    CAS  Google Scholar 

  11. D. S. Chaha, J. E. Swan and M. Moo-Young Devs ind. Microbiol.18, 433 (1977).

    Google Scholar 

  12. T. C. Rexen, Animal Fd Sci. Technol.1, 73 (1976).

    Article  CAS  Google Scholar 

  13. Y. W. Han and C. D. Callihan, Appl. Microbiol.27, 159 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. G. H. Grant, Y. W. Han and A. W. Anderson, Appl. environ. Microbiol.35, 549 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. M. R. Ladisch, C. M. Ladisch and G. T. Tsao, Science201, 743 (1978).

    Article  CAS  PubMed  Google Scholar 

  16. E. T. Reese and M. Mandels, Biotechnol. Bioengng22, 323 (1980).

    Article  CAS  Google Scholar 

  17. R. F. Gomez, in: Proc. Colloque Cellulolyse Microbienne, p. 177, Marseille 1980.

  18. I. C. Wang, I. Biocic, H.-Y. Fang and S.-D. Wang, in: Proc. 3rd Annual Biomass Energy System Conference, SERI/TP 33-285 (1979).

  19. J. Wiegel, Experientia,36, 1434 (1980).

    Article  CAS  Google Scholar 

  20. J. E. L. Corry, J. Bact.44, 1 (1978).

    CAS  Google Scholar 

  21. J. G. Zeikus, Env. Microbiol. Tech.1, 243 (1979).

    Article  CAS  Google Scholar 

  22. M. Tansey, ASM-News45, 417 (1979).

    Google Scholar 

  23. S. L. Rosenberg, Mycologia70, 1 (1978).

    Article  CAS  Google Scholar 

  24. W. D. Belamy, ASM-News45, 326 (1979).

    Google Scholar 

  25. J. Wiegel, in preparation.

  26. C. L. Cooney, D. I. C. Wang, S. D. Wang, I. Gordon and M. Jiminez, Biotechnol. Bioengng Symp.8, 103 (1979).

    CAS  Google Scholar 

  27. D. V. Garcia-Martinez, A. Shinmyo, A. Madia and A. L. Demain, Eur. J. appl. Microbiol.9, 189 (1980).

    Article  CAS  Google Scholar 

  28. N. D. Sjolander, J. Bact.34, 419 (1937).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. E. J. Hsu and Z. J. Ordal, J. Bact.102, 369 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. J. Wiegel and L. G. Ljungdahl, in: Technische Mikrobiologie, p. 117. Ed. H. Dellweg. Verlag Versuchs- und Lehranstalt für Spiritusfabrikation und Fermentationstechnologie im Institut für Gärungsgewebe und Biotechnologie, Berlin 1979.

    Google Scholar 

  31. J. Wiegel, L. G. Ljungdahl and J. R. Rawson, J. Bact.139, 800 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. J. Wiegel and L. G. Ljungdahl, Archs Microbiol.,128, 343 (1981).

    Article  CAS  Google Scholar 

  33. L. G. Ljungdahl and J. Wiegel, USA patents 4.292.406 and 4.292.407 (1981).

  34. H. Dellweg and K. Misselhorn, in: Microbiology applied to Biotechnology; Dechema Monographie No. 83, p. 35. Verlag Chemie, Weinheim/New York 1979.

    Google Scholar 

  35. H. H. Dietrichs, Holzforschung32, 193 (1978).

    Article  CAS  Google Scholar 

  36. S. I. Aronovsky and R. A. Gortner, Indian Engng Chem.28, 1270 (1936).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Acknowledgment. Part of this work was supported by Energy and Research Development Administration contract number EY-76-509-0888-M003, and by the Deutsche Forschungsgemeinschaft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiegel, J. Ethanol from cellulose. Experientia 38, 151–156 (1982). https://doi.org/10.1007/BF01945067

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01945067

Keywords

Navigation