Skip to main content
Log in

Structure and evolution of the terrestrial planets

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Geo-scientific planetary research of the last 25 years has revealed the global structure and evolution of the terrestrial planets Moon, Mercury, Venus and Mars. The evolution of the terrestrial bodies involves a differentiation into heavy metallic cores, Fe-and Mg-rich silicate mantles and light Ca, Al-rich silicate crusts early in the history of the solar system. Magnetic measurements yield a weak dipole field for Mercury, a very weak field (and local anomalies) for the Moon and no measurable field for Venus and mars. Seismic studies of the Moon show a crust-mantle boundary at an average depth of 60 km for the front side, P- and S-wave velocities around 8 respectively 4.5 km s−1 in the mantle and a considerable S-wave attenuation below a depth of 1000 km. Satellite gravity permits the study of lateral density variations in the lithosphere. Additional contributions come from photogeology, orbital particle, x-and ψ-ray measurements, radar and petrology.

The cratered surfaces of the smaller bodies Moon and Mercury have been mainly shaped by meteorite impacts followed by a period of volcanic flows into the impact basins until about 3×109 yr before present. Mars in addition shows a more developed surface. Its northern half is dominated by subsidence and younger volcanic flows. It even shows a graben system (rift) in the equatorial region. Large channels and relics of permafrost attest the role of water for the erosional history. Venus, the most developed body except Earth, shows many indications of volcanism, grabens (rifts) and at least at northern latitudes collisional belts, i.e. mountain ranges, suggesting a limited plate tectonic process with a possible shallow subduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a=R e :

mean equatorial radius (km)

A(r, t) :

heat production by radioactive elements (W m−3)

A, B :

equatorial moments of inertia

b :

polar radius (km)

\(\bar b(K)\) :

complex amplitude of bathymetry in the wave number (K) domain (m)

C :

polar moment of inertia

C Fe :

moment of inertia of metallic core

C Si :

moment of inertia of silicate mantle

C p :

heat capacity at constant pressure (JK−1 mole)

C nm,J nm,S nm :

harmonic coefficients of degreen and orderm

C/(MR 2 e ):

factor of moment of inertia

d :

distance (km)

d :

nondimensional radius of disc load of elastic bending model

D :

diameter of crater (km)

D :

flexural rigidity (dyn cm)

E :

Young modulus (dyn cm−2)

E :

maximum strain energy

ΔE :

energy loss during time interval Δt

f :

frequency (Hz)

f :

flattening

F :

magnetic field strength (Oe) (1 Oe=79.58A m−1)

g :

acceleration or gravity (cms−2) or (mGal) (1mGal=10−3cms−2)

\(\bar g\) :

mean acceleration

g e :

equatorial surface gravity

\(\bar g(K)\) :

complex amplitude of gravity anomaly in the wave number (K) domain

Δg′:

free air gravity anomaly (FAA)

Δg″:

Bouguer gravity anomaly

δg t :

gravity attraction of the topography

G :

gravitational constant,G=6.67×10−11 m3kg−1s−2

GM :

planetocentric gravitational constant

h :

relation of centrifugal acceleration (ω2 R e ) to surface acceleration (g e ) at the equator

J :

magnetic flux density (magnetic field) (T) (1T=109 nT=109 γ=104G (Gauss))

J 2 :

oblateness

J nm :

seeC nm

k (0) :

(zero) pressure bulk modulus (Pa) (Pascal, 1 Pa=1 Nm−2)

K :

wave number (km−1)

K * :

thermal conductivity (Jm−1s−1K−1)

L :

thickness of elastic lithosphere (km)

M :

mas of planet (kg)

M Fe :

mass of metallic core

M Si :

mass of silicate mantle

M(r) :

fractional mass of planet with fractional radiusr

m :

magnetic dipole moment (Am2) (1Am2=103Gcm3)

m b :

body wave magnitude

N :

crater frequency (km−2)

N(D) :

cumulative number of cumulative frequency of craters with diameters ≥D

P :

pressure (Pa) (1Pa=1Nm−2=10−5 bar)

P z :

vertical (lithostatic) stress, see also σ z (Pa)

P m n (cosΘ):

Legendre polynomial

q :

surface load (dyn cm−2)

Q :

seismic quality factor, 2πEE

Q s ,Q p :

seismic quality factor derived from seismic S-and P-waves

R=R 0 :

mean radius of the planet (km) (2a+b)/3

R e =a :

mean equatorial radius of the planet

r :

distance from the center of the planet (fractional radius)

r Fe :

radius of metallic core

S nm :

seeC nm

t :

time and age in a (years), d (days), h (hours), min (minutes), s (seconds)

T :

mean crustal thickness from Airy isostatic gravity models (km)

T :

temperature (°C or K) (0°C=273.15K)

T m :

solidus temperature

T :

sideral period of rotation in d (days), h (hours), min (minutes), s (seconds), ω=2π/T

U :

external potential field of gravity of a planet

V :

volume of planet

V p ,V s :

compressional (P), shear (S) wave velocity, respectively (kms−1)

w :

deflection of lithosphere from elastic bending models (km)

z, Z :

depth (km)

z (K) :

admittance function (mGal m−1)

α:

thermal expansion (°C−1)

η:

viscosity (poise) (1 poise=1gcm−1s−1)

Θ:

co-latitude (90°-ϕ)

λ:

longitude

ν:

Poisson ratio

ρ:

density (g cm−3)

\(\bar \rho \) :

mean density

ρ0 :

zero pressure density

ρ m , ρSi :

average density of silicate mantle (‘fluid interior’)

\(\bar \rho _{Fe} \) :

average density of metallic core

ρ t , ρtop :

density of the topography

Δρ:

density difference between crustal and mantle material

σ:

electrical conductivity (Ω−1 m−1)

σ r , σθ :

radial and azimuthal surface stress of axisymmetric load (Pa)

σ z :

vertical (lithostatic) stress (seeP z )

σII :

second invariant of stress deviation tensor

ϕ:

latitude

ω:

angular velocity of a planet (=2π/T)

ages:

in years (a), generally 0 years is present

B.P.:

before present

FAA:

Free Air Gravity Anomaly (see Δg

HFT:

High Frequency Teleseismic event

LTP:

Lunar Transient Phenomenon

LOS:

Line-Of-Sight

NRM:

Natural Remanent Magnetization

References

  • Adams, J. B., Pieters, C. M., Metzger, A. E., Adler, I., McCord, T., Chapman, C. R., Johnson, T. V., and Bielefeld, M. J.: 1981, ‘Remote Sensing of Basalts in the Solar System’, inBasaltic Volcanism Study Project: Basaltic Volcanism on the Terrestrial Planets, Pergamon, New York, pp. 439–490.

    Google Scholar 

  • Adler, I., Trombka, J., Gerard, J. Schmadebeck, R., Lowman, P., Blodgett, H., Yin, L., Eller, E., Lamothe, R., Gorenstein, P., Bjorkholm, P., Harris, B., and Gursky, H.:, 1972a, ‘X-ray Fluorescence Experiment’,Apollo 15, Preliminary Science Report, NASA SP-289, 17-1-17-17.

  • Adler, I., Trombka, J., Gerard, J., Lowman, P., Schmadebeck, R., Blodgett, H., Eller, E., Yin, L., Lamothe, R., Osswald, G., Gorenstein, P., Bjorkholm, P., Gursky, H., Harris, B., Golub., L., and Harnden, F. R., Jr.: 1972b, ‘X-ray Fluorescence Experiment’,Apollo 16 Preliminary Science Report, NASA SP-315, 19-1-19-14.

  • Ananda, M. P., Sjogren, W. L., Phillips, R. J., Wimberly, R. N., and Bills, B. G.: 1980; ‘A Low-order Global Gravity Field of Venus and Dynamical Implications’,J. Geophys. Res. 85, 8303–8318.

    Google Scholar 

  • Anderson, D. L.: 1981, ‘Plate Tectonics on Venus’,Geophys. Res. Lett. 8, 309–311.

    Google Scholar 

  • Anderson, D. L. and Hart, R.: 1976, ‘An Earth Model Based on Free Oscillations and Body Waves’,J. Geophys. Res. 81, 1461–1475.

    Google Scholar 

  • Anderson, D. L., Miller, W. F., Latham, G. V., Nakamura, Y., Toksöz, M. N., Dainty, A. M., Duennebier, F. K., Lazarewicz, A. R., Kovach, R. L., and Knight, T. C. D.: 1977, ‘Seismology on Mars’, 4524–4546.

  • Arnold, J. R., Peterson, L. E., Metzger, A. E., and Trombka, J. I.: 1972, ‘Gamma-ray Spectrometer Experiment’,Apollo 15, Preliminary Science Report, NASA SP-289, 16-1-16-6.

  • Banerdt, W. B., Phillips, R. J., Sleep, N. H., and Saunders, R. S.: 1982, ‘Thick Shell Tectonics on One-plate Planets: Applications to Mars’,J. Geophys. Res. 87, 9723–9733.

    Google Scholar 

  • Barsukov, V. L., Surkov, Y. A., Moskaleva, L. P., Shcheglov, O. P., Kharyukova, V. P., Manvelyan, O. S., and Perminov, V. G.: 1982, ‘Geochemical, Study of the Surface of Venus by the Venera 13 and Venera 14 Space Probes’,Geochimia 7, 899–919.

    Google Scholar 

  • Beatty, J. K.: 1985, ‘A Radar Tour of Venus’,Sky and Telescope 69, No. 6, 507–510.

    Google Scholar 

  • Beatty, J. K., O'Leary, B., Chaikin, A. (eds.): 1981,The New Solar System, Sky Publ. Corp. and Cambridge Univ. Press, Cambridge, Massachusetts, p. 219.

    Google Scholar 

  • Beaumont, Ch.: 1978, ‘The Evolution of Sedimentary Basins on a Viscoelastic Lithosphere: Theory and Examples’,Geophys. J. R. Astr. Soc. 55, 471–497.

    Google Scholar 

  • Bielefeld, M. J.: 1977, ‘Lunar Surface Chemistry of Regions Common to the Orbital X-ray and Gamma-ray Experiments’,Proc. Lunar Sci. Conf. 8, pp. 1131–1147.

    Google Scholar 

  • Bills, B. G. and Ferrari, A. J.: 1975, ‘Lunar Topography’,Proc. Lunar Sci. Conf. 6, Vol. 3, frontispiece, Plate 2.

  • Bills, B. G. and Ferrari, A. J.: 1977, ‘A Lunar Density Model Consistent with Topographic, Gravitational, Librational and Seismic Data,’,J. Geophys. Res. 82, 1306–1314.

    Google Scholar 

  • Bills, B. G. and Ferrari, A. J.: 1978, ‘Mars Topographic Harmonics and Geophysical Implications,’J. Geophys. Res. 83, 3497–3508.

    Google Scholar 

  • Bills, B. G. and Ferrari, A. J.: 1980, ‘A Harmonic Analysis of Lunar Gravity’,J. Geophys. Res. 85 1013–1025.

    Google Scholar 

  • Binder, A. B.: 1974, ‘On the Origin of the Moon by Rotational Fission’,The Moon 11, 53–76.

    Google Scholar 

  • Bjorkholm, P. J., Golub, L., and Gorenstein, P.: 1973, ‘Distribution of222Rn and210Po on the Lunar Surface as Observed by the Alpha Particle Spectrometer’,Proc. Lunar Sci. Conf. 4, pp. 2793–2802.

    Google Scholar 

  • Bratt, S. R., Solomon, S. C., Head, J. W., and Thurber, C. H.: 1985, ‘The Deep Structure of the Lunar Basins: Implications for Basin Formation and Modification’,J. Geophys. Res. 90, 3049–3064.

    Google Scholar 

  • Brown, C. and Girdler, R. W.: 1980, ‘Interpretation of African Gravity and its Implication, for Breakup of the Continents’,J. Geophys. Res. 85, 6443–6455.

    Google Scholar 

  • Busse, F. H.: 1976, ‘Generation of Planetary Magnetism by Convection’.,Phys. Earth Plan. Int. 12, 350–358.

    Google Scholar 

  • Cameron, W. S.: 1977, ‘Lunar Transient Phenomena (LTP): Manifestations, Site Distribution, Correlations and Possible Causes’,Phys. Earth. Plan. Int. 14, 194–216.

    Google Scholar 

  • Campbell, D. B. and Burns, B. A.: 1980, ‘Earth-Based Radar Imagery of Venus’,J. Geophys. Res 85, 8271–8281.

    Google Scholar 

  • Campbell, D. B., Head, J. W., Harmon, J. K., and Hine, A. A.: 1983, ‘Venus: Identification of Banded Terrain in the Mountains of Ishtar Terra’,Science 221, 644–647.

    Google Scholar 

  • Carr, M. H.: 1981,The Surface of Mars, Yale University Press, New Haven and London.

    Google Scholar 

  • Carrier, W. D., III, Mitchell, J. K., and Mahmood, A.: 1973, ‘The Relative Density of Lunar Soil’,Proc. Lunar Sci. Conf. 4, 2403–2411.

    Google Scholar 

  • Cazenave, A. and Dominh, K.: 1981, ‘Elastic Thickness of the Venus Lithosphere Estimated from Topography and Gravity’,Geophys. Res. Lett. 8, 1039–1042.

    Google Scholar 

  • Chapman, C., Matson, D., Newburn, R., Orton, G., Scott, E., and Zeller, B.: 1979,Solar System Fact Finder, Lunar and Planetary Institute, contr. No. 393, Houston.

  • Christensen, E. J.: 1975, ‘Martian Topography Derived from Occultation, Radar, Spectral, and Optical Measurements’,J. Geophys. Res. 80, 2909–2913.

    Google Scholar 

  • Christensen, E. J. and Balmino, G.: 1979, ‘Development, and Analysis of a Twelfth Degree and Order Gravity Model for Mars’,J. Geophys. Res. 84, 7943–7953.

    Google Scholar 

  • Cisowski, S. M., Collinson, D. W., Runcorn, S. K., Stephenson, A., and Fuller, M.: 1983, ‘A Review of Lunar Paleointensity Data and Implications for the Origin of Lunar Magnetism’, Proc. Lunar Plan. Sci. Conf. 13, Part 2,.J. Geophys. Res. 88, Suppl., A691-A704.

    Google Scholar 

  • Cochran, J. R.: 1980, ‘Some Remarks on Isostasy and the Long-Term Behaviour of the Continental Lithosphere’,Earth Plan. Sci. Lett. 46, 266–274.

    Google Scholar 

  • Cole, G. H. A.: 1978,The Structure of Planets, Wykeham, London.

    Google Scholar 

  • Cole, G. H. A.: 1982, ‘General Considerations of the Physics of Planetary Interiors’,Geophys. Surv. 5, 89–139.

    Google Scholar 

  • Collinson, D. W.: 1984, ‘Past and Present Magnetism of the Moon’,Geophys., Surv. 7, 57–73.

    Google Scholar 

  • Comer, R. P., Solomon, S. C., and Head, J. W.: 1980, ‘Thickness of the Martian Lithosphere Beneath Volcanic Loads: A Consideration of Time Dependent Effects’,Lunar Plan. Sci. XI, 171–173.

    Google Scholar 

  • Cooper, M. R., Kovach, R. L., and Watkins, J. S.: 1974, ‘Lunar Near-Surface Structure’,Rev. Geophys. and Space Phys. 12, 291–308.

    Google Scholar 

  • Daily, W. D. and Dyal, P.: 1979, ‘Theories for the Origin of Lunar Magnetism’,Phys. Earth Plan. Int. 20, 255–270.

    Google Scholar 

  • Dainty, A. M., Toksöz, M. N., and Stein, S.: 1976, ‘Seismic Investigation of the Lunar Interior’,Proc. Lunar Sci. Conf. 7, pp. 3057–3075.

    Google Scholar 

  • Davies, M. E., Dwornik, S. E., Gault, D. E., and Strom, R. G.: 1978,Atlas of Mercury, National Aeronautics and Space Administration, NASA SP-423.

  • Downs, G. S., Mouginis-Mark, P. J., Zisk, S. H., and Thompson, T. W.: 1982, ‘New Radar-Derived Topography for the Equatorial Belt of Mars’,Lunar Plan. Sci. XIII, pp. 182–183.

    Google Scholar 

  • Dearnly, R.: 1965, ‘Orogenic Fold-Belts and Continental Drift’,Nature 206 1083–1087.

    Google Scholar 

  • Defense, Mapping Agency: 1974,Lunar Topographic Orthophotomap LTO38B1, 1:250000, and other maps, see also Schimermann (1973).

  • DeHon, R. A. and Waskom, J. D.: 1976, ‘Geologic Structure of the Eastern Mare Basins’,Proc. Lunar Sci. Conf. 7, 2729–2746.

    Google Scholar 

  • Dyal, P., Parkin, C. W., and Daily, W. D.: 1974, ‘Magnetism and the Interior of the Moon’,Rev. Geophys. Space Phys. 12, 568–591.

    Google Scholar 

  • Eberhardt, P., Geiss, J., Grögler, N., and Stettler, A.: 1973, ‘How old is the Crater Copernicus?’,The Moon 8, 104–114.

    Google Scholar 

  • Esposito, P. B., Anderson, J. D., and Ng, A. T. Y.: 1978, ‘Experimental Determination of Mercury's Mass and Oblateness’,Cospar: Space Res. 17, 639–644.

    Google Scholar 

  • Esposito, P. B., Sjogren, W. L., Mottinger, N. A., Bills, B. G., and Abbott, E.: 1982, ‘Venus Gravity: Analysis of Beta Regio’,Icarus 51, 448–459.

    Google Scholar 

  • Faure, G.: 1977,Principles of Isotope Geology, Wiley, New York.

    Google Scholar 

  • Ferrari, A. J. and Bills, B. G.: 1979, ‘Planetary Geodesy’,Rev. Geophys. Space Phys. 17, 1663–1677.

    Google Scholar 

  • Florensky, C. P., Basilevsky, A. T., Burba, G. A., Nikolaeva, O. V., Pronin, A. A., and Volkov, V. P.: 1977a, ‘First Panoramas of the Venusian Surface’,Proc. Lunar Sci. Conf. 8, 2655–2664.

    Google Scholar 

  • Florensky, C. P., Ronca, L. B., Basilevsky, A. T., Burba, G. A., Nikolaeva, O. V., Pronin, A. A., Trakhtman, A. M., Volkov V. P., and Zazetsky, V. V.: 1977b, ‘The Surface of Venus as Revealed by Soviet Venera 9 and 10’,Geol. Soc. Am. Bull. 88, 1537–1545.

    Google Scholar 

  • Fuller, M.: 1974, ‘Lunar Magnetism’,Rev. Geophys. Space Phys. 12, 23–70.

    Google Scholar 

  • Goins, N. R., Dainty, A. M., and Toksöz, M. N.: 1981, ‘Lunar Seismology: The Internal Structure of the Moon’,J. Geophys. Res. 86, 5061–5074.

    Google Scholar 

  • Gondolatsch, F.: 1981, ‘The Planets and Their Satellites’, in Schaifers, K., Voigt, H. H. (eds.),Landolt-Börnstein, New Series, Vol. VI/2a, Chapter 3.2.

  • Goodwin, A. M.: 1981, ‘Precambrian Perspectives’,Science 213, 55–61.

    Google Scholar 

  • Gorenstein, P. and Bjorkholm, P.: 1972a, ‘Alpha-Particle Spectrometer Experiment’, Apollo 15,Preliminary Science Report, NASA SP-289, 18-1-18-7.

  • Gorenstein, P. and Bjorkholm, P.: 1972b, ‘Alpha-Particle Spectrometer Experiment’,Apollo 16, Preliminary Science Report, NASA SP-315, 20-1-20-6.

  • Gottlieb, P.: 1970, ‘Estimation of Local Gravity Features’,Radio Sci. 5, 303–312.

    Google Scholar 

  • Grant, F. S. and West, G. F.: 1965,Interpretation Theory in Applied Geophysics, International Series in the Earth Sciences, McGraw-Hill, New York.

    Google Scholar 

  • Harris, P.: 1971, ‘The Composition of the Earth’, in Gass, I. G., Smith, P. J., Wilson, R. C. L. (eds.),Understanding the Earth, Artemis Press, Sussex, pp. 53–70.

    Google Scholar 

  • Hartmann, W. K.: 1977, ‘Cratering in the Solar System’,Scientific American 236, No. 1, 84–99.

    Google Scholar 

  • Head, J. W., Settle, M., and Stein, R. S.: 1975, ‘Volume of Material Ejected from Major Lunar Basins and Implications for the Depth of Excavation of Lunar Samples’,Proc. Lunar Sci. Conf. 6, 2805–2829.

    Google Scholar 

  • Hiller, K. H.: 1979,Geologic Map of the Amenthes Quadrangle of Mars, 1: 5000000, Geol. Surv. Misc. Invest. Ser. M5M 15/248G, Map I-1110.

  • Hoffmann, J. H., Hodges, R. R., Jr., and Johnson, F. S.: 1973, ‘Lunar Atmospheric Composition Results from Apollo 17’,Lunar Plan. Sci. Conf. 4, 2865–2875.

    Google Scholar 

  • Hood, L. L., Coleman, P. J., Jr., and Wilhelms, D. E.: 1979, ‘Lunar Nearside Magnetic Anomalies’,Proc. Lunar Plan. Sci. Conf. 10, 2235–2257.

    Google Scholar 

  • Hood, L. L., Russell, C. T., and Coleman, P. J., Jr.: 1981, ‘Contour Maps of the Lunar Remanent Magnetic Fields’,J. Geophys. Res. 86, 1055–1069.

    Google Scholar 

  • Hood, L. L. and Sonett, C. P.: 1982, ‘Limits on the Lunar Temperature Profile’,Geophys. Res. Lett. 9, 37–40.

    Google Scholar 

  • Hood, L. L., Herbert, G., and Sonett, C. P.: 1982, ‘The Deep Lunar Electrical Conductivity Profile: Structural and Thermal Inferences’,J. Geophys. Res. 87, 5311–5326.

    Google Scholar 

  • Howard, H. and 19 others 1974, ‘Venus: Mass, Gravity Field, Atmosphere and Ionosphere as Measured by The Mariner 10 Dual-Frequency Radio System’,Science 183, 1297–1300.

    Google Scholar 

  • Janle, P.: 1980, ‘Structure and Evolution of Young Circular and Old Irregular Maria’,Lunar Plan. Sci. XI, 511–512.

    Google Scholar 

  • Janle, P.: 1981a, ‘A Crustal Gravity Model of the Sereitatis-Crisium Area of the Moon’,J. Geophys. 49, 57–65.

    Google Scholar 

  • Janle, P.: 1981b, ‘Investigations of Local Bouguer Gravity Anomalies of the Apennines and the Taurus Mountains of the Moon’,Phys. Earth Plan. Int. 27, 47–59.

    Google Scholar 

  • Janle, P.: 1983, ‘Bouguer Gravity Profiles across the Highland-Lowland Escarpment on Mars’,Moon and Planets 28, 55–67.

    Google Scholar 

  • Janle, P. and Ropers, J.: 1983, ‘Investigation of the Isostatic State of the Elysium Dome on Mars by Gravity Models’,Phys. Earth Plan. Int. 32, 132–145.

    Google Scholar 

  • Janle, P. and Jannsen, D.: 1984, ‘Tectonics of the Southern Escarpment of Ishtar Terra on Venus from Observations of Morphology and Gravity’,Earth, Moon, and Planets 31, 141–155.

    Google Scholar 

  • Janle, P., Roth, F., and Voss, J.: 1984, ‘Limits of the Lithospheric Thickness of the Elysium Area on Mars from Correlations of Surface Stresses with the Lineament System’,Lunar Plan. Sci. XV, 401–402.

    Google Scholar 

  • Johnson, F. S., Carroll, J. M., and Evans, D. E.: 1972, ‘Lunar Atmosphere Measurements’,Proc. Lunar Sci. Conf. 3, 2231–2242.

    Google Scholar 

  • Karner, G. D. and Watts, A. B.: 1983, ‘Gravity Anomalies and Flexure of Lithosphere at Mountain Ranges’,J. Geophys. Res. 88, 10,449–10,477.

    Google Scholar 

  • Kaula, W. M.: 1967, ‘Theory of Statistical Analysis of Data Distributed over a Sphere’,Rev. Geophys. 5, 83–107.

    Google Scholar 

  • Kaula, W. M.: 1968,An Introduction to Planetary Physics, the Terrestrial Planets, Wiley, New York.

    Google Scholar 

  • Kaula, W. M., Schubert, G., Lingenfelter, R. E., Sjogren, W. L., and Wollenhaupt, W. R. 1972, ‘Analysis and Interpretation of Lunar Laser Altimetry’,Proc. Lunar Sci. Conf. 3, 2189–2204.

    Google Scholar 

  • Kaula, W. M. and Phillips, R. J.: 1981, ‘Quantitative Tests for Plate Tectonics on Venus’,Geophys. Res. Lett. 8, 1187–1190.

    Google Scholar 

  • Keihm, S. J. and Langseth, M. G., Jr.: 1973, ‘Surface Brightness Temperatures at the Apollo 17 Heat Flow Site: Thermal Conductivity of the Upper 15 cm of Regolith’,Proc. Lunar Sci. Conf. 4, 2503–2513.

    Google Scholar 

  • Kopal, Z.: 1969,The Moon, D. Reidel Publ. Co., Dordrecht, Holland.

    Google Scholar 

  • Kunze, A. W. G.: 1974a, ‘Lunar Mascons: Another Model and its Implications’,The Moon 11, 9–17.

    Google Scholar 

  • Kunze, A. W. G.: 1974b, ‘Creep Response of the Lunar Crust in Mare Regions from an Analysis of Crater Deformation’,Phys. Earth Plan. Int. 8, 375–387.

    Google Scholar 

  • Lambeck, K. and Nakiboglu, S. M.: 1980, ‘Seamount Loading and Stress in the Ocean Lithosphere’,J. Geophys. Res. 85, 6403–6418.

    Google Scholar 

  • Lammlein, D. R.: 1977, ‘Lunar Seismicity and Tectonics’,Phys. Earth Plant. Int. 14, 224–273.

    Google Scholar 

  • Lammlein, D. R., Latham, G. V., Dorman, J., Nakamura, Y., and Ewing, M.: 1974, ‘Lunar Seismicity, Structure, and Tectonics’,Rev. Geophys. Space Phys. 12, 1–21.

    Google Scholar 

  • Lange, M.: 1977,Modellrechnungen zur thermischen Entwicklung des Mondes, Master thesis, Kiel.

  • Langseth, M. G., Keihm, S. J., and Chute, J. L., Jr.: 1973, ‘Heat Flow Experiment’,Appolo 17, Perliminary Science Report, NASA SP-330, 9-1–9-24.

  • Latham, G., Ewing, M., Press, F., Sutton, G., Dorman, J., Nakamura, Y., Toksöz, N., Meissner, R., Duennebier, F., and Kovach, R.: 1970, ‘Seismic Data from Man-made Impacts on the Moon’,Science 170, 620–625.

    Google Scholar 

  • Latham, G., Ewing, M., Dorman, J., Lammlein, D., Press, F., Toksöz, N., Sutton, G., Duennebier, F., and Nakamura, Y.: 1971, ‘Moonquakes’,Science 174, 687–692.

    Google Scholar 

  • Lerch, F. J., Klosko, S. M., Laubscher, R.E., and Wagner, C. A.: 1979, ‘Gravity Model Improvement Using Geos 3 (GEM9 and 10)’,J. Geophys. Res. 84, 3897–3916.

    Google Scholar 

  • Lerch, F.J., Marsch, J. G., Klosko, S. M., and Williamson, R. G.: 1982, ‘Gravity Model Improvement for SEASAT’,J. Geophys. Res. Oceans and Atm.87, 3281–3296.

    Google Scholar 

  • Lindal, G. F., Hotz, H. B., Sweetnam, D. N., Shippony, Z., Brenkle, J. P., Hartsell, G. V., and Spear, R. T.: 1979, ‘Viking Radio Occultation Measurements of the Atmosphere and Topography of Mars: Data Acquired During 1 Martian Year of Tracking’,J. Geophys. Res. 84, 8443–8456.

    Google Scholar 

  • Masson, Ph.: 1977, ‘Structure Pattern Analysis of the Noctic Labyrinthus-Valles Marineris Regious of Mars’,Icarus 30, 49–62.

    Article  Google Scholar 

  • Masursky, H., Eliason, E., Ford, P. G., McGill, G. E., Pettengill, G. H., Schaber, G. G., and Schubert, G.: 1980, ‘Pioneer Venus Radar Results: Geology from Images and Altrimetry’,J. Geophys. Res. 85, 8232–8260.

    Google Scholar 

  • McGill, G. E., Steenstrup, S. J., Barton, C., and Ford, P. G.: 1981, ‘Continental Rifting and the Origin of Beta Regio, Venus’,Geophys. Res. Lett. 8, 737–740.

    Google Scholar 

  • McGill, G. E., Warner, J. L., Malin, M. C., Arvidson, R. E., Eliason, E.: 1983, ‘Topography, Surface Properties, and Tectonic Evolution’, in Heunten, D. M., Colin, L., Donahue, T. M., and Moroz, V. I.:Venus, The University of Arizona Press, Tucson, pp. 69–130.

    Google Scholar 

  • McKenzie, D. and Bowin, C.: 1976, ‘The Relationship between Bathymetry and Gravity in the Atlantic Ocean’,J. Geophys. Res. 81, 1903–1915.

    Google Scholar 

  • McNutt, M.: 1979, ‘Compensation of Oceanic Topography: An Application of the Response Function Technique to the Surveyor Area’,J. Geophys. Res. 84, 7589–7598.

    Google Scholar 

  • Meissner, R.: 1975, ‘Viscosity as Obtained from Selenotherms’,The Moon 12, 179–191.

    Article  Google Scholar 

  • Meissner, R.: 1983, ‘Evolution of Plate Tectonics on Terrestrial Planets’,Annales Geophysicae 1, 121–127.

    Google Scholar 

  • Meissner, R., Sutton, G. H., and Duennebier, F. K.: 1970, ‘Moonquakes’,Trans. Am. Geophys. Union 51, 776.

    Google Scholar 

  • Meissner, R., Sutton, G. H., and Duennebier, F. K.: 1971, ‘Mondbeben’,Umschau 71, 111–115.

    Google Scholar 

  • Meissner, R. and Lange, M.: 1977, ‘An Approach for Calculating Temperatures and Viscosities in Terrestrial Planets’,Proc. Lunar Sci. Conf. 8, 551–562.

    Google Scholar 

  • Meissner, R. and Voss, J.: 1979, ‘Viscosity Limits and Possible Origin of Tidal Moonquakes’,Lunar Plan. Sci. X, 822–824.

    Google Scholar 

  • Meissner, R. and Janle, P.: 1984, ‘Planetology of Terrestrial Planets’, in Fuchs, K. and Soffel, H. (eds.),Landolt-Börnstein, New Series, Group V, Vol. 2a, pp. 379–417.

  • Melosh, H. J.: 1978, ‘The Tectonics of Mascon Loading’,Proc. Lunar Plan. Sci. Conf. 9, 3513–3525.

    Google Scholar 

  • Menard, H. W.: 1978, ‘Fragmentation of the Farallon Plate by Pivoting Subduction’,J. Geol. 86, 99–110.

    Google Scholar 

  • Metzger, A. E., Trombka, J. I., Peterson, L. E., Reedy, R. C., and Arnold, J. R.: 1973, ‘Net Lunar Radioactivity’,Proc. Lunar Sci. Conf. 4, Vol. 1, frontispiece, Plate II.

  • Middlehurst, B. M.: 1967, ‘An Analysis of Lunar Events’,Rev. Geophys. 5, 173–189.

    Google Scholar 

  • Moore, H. J., Hutton, R. E., Scott, R. F., Spitzer, C. R., and Shorthill, R. W.: 1977, ‘Surface Materials of the Viking Landing Sites’,J. Geophys. Res. 82, 4497–4523.

    Google Scholar 

  • Mouginis-Mark, P. J.: 1984, ‘High Resolution Images Yield New Data on Venus’,Geotimes 29, 10–12.

    Google Scholar 

  • Muller, P. M. and Sjogren, W. L.: 1968, ‘Mascons: Lunar Mass Concentrations’,Science 161, 680–684.

    Google Scholar 

  • Murnaghan, F. D.: 1951,Finite Deformation of an Elastic Solid, Wiley, New York.

    Google Scholar 

  • Murray, B. C. 1975, ‘Mercury’,Scient. Am. 233, No. 3, 58–68.

    Google Scholar 

  • Mutch, Th., Arvidson, R. E., Head, J. W., Jones, K. L., and Saunders, R. S.: 1976,The Geology of Mars, Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Nakamura, Y.: 1977, ‘HFT Events: Shallow Moonquakes’,Phys. Earth. Plant. Int. 14, 217–223.

    Article  Google Scholar 

  • Nakamura, Y.: 1983, ‘Seismic Velocity Structure of the Lunar Matnle’,J. Geophys. Res. 88, 677–686.

    Google Scholar 

  • Nakamura, Y., Lammlein, D., Latham, G., Ewing, M., Dorman, J., Press, F., and Toksöz, N.: 1973, ‘New Seismic Data on the State of the Deep Lunar Interior’,Science 181, 49–51.

    Google Scholar 

  • Nakamura, Y., Latham, G., Lammlein, D., Ewing, M., Duennebier, F., and Dorman, J.: 1974, ‘Deep Lunar Interior Inferred from Recent Seismic Data’,Geophys. Res. Lett. 1, 137–140.

    Google Scholar 

  • Nakamura, Y., Latham, G. V., Dorman, H. J., Ibrahim, A. K., Koymama, J., and Horvath, P.: 1979, ‘Depth, Distribution and Implications as to the Present State of the Lunar Interior’,Proc. Lunar Plan. Sci. Conf. 10, 2299–2309.

    Google Scholar 

  • Nakamura, Y., Latham, G. V., and Dorman, H. J.: 1982, ‘Apollo Lunar Seismic Expeirment — Final Summary’,Proc. Lunar Plan. Sci. Conf. 13, Part 1,J. Geophys. Res. 87, Supplement, A117-A123.

    Google Scholar 

  • Neukum, G.: 1983,Meteoritenbombardement und Datierung planetarer Oberflächen, Habilitationsschrift, München.

  • Neukum, G. and Hiller, K.: 1981, ‘Martian Ages’,J. Geophys. Res. 86, 3097–3121.

    Google Scholar 

  • Pettengill, G. H., Eliason, E., Ford, P. G., Loriot, G. B., Masursky, H., and McGill, G. E.: 1980, ‘Pioneer Venus Radar Results: Altimetry and Surface Properties,’J. Geophys. Res. 85, 8261–8270.

    Google Scholar 

  • Phillips, R. J. and 14 others: 1973, ‘Apollo Lunar Sounder Experiment’,Apollo 17, Preliminary Science Report, NASA SP-330, 22-1–22-26.

  • Phillips, R. J., Sjogren, W. L., Abbott, E. A.: 1978, ‘Simulation Gravity Modelling to Spacecraft-tracking Data: Analysis and Application’,J. Geophyh. Res. 83, 5455–5464.

    Google Scholar 

  • Phillips, R. J. and Ivins, E. R.: 1979, ‘Geophysical Observations Pertaining to Solid-State Convection in the Terrestrial Planets’,Phys. Earth Plan. Int. 19, 107–148.

    Article  Google Scholar 

  • Phillips, R. J. and Lambeck, K.: 1980, ‘Gravity Fields of the Terrestrial Planets: Long-Wavelength Anomalies and Tectonics’,Rev. Geophys. Space Phys. 18, 27–76.

    Google Scholar 

  • Phillips, R. J., Kaula, W. M., McGill, G. E., and Malin, M. C.: 1981, ‘Tectonics and Evolution of Venus’,Science 212, 879–887.

    Google Scholar 

  • Phillips, R. J. and Malin, M. C. 1983, ‘The Interior of Venus and Tectonic Implications’, in Hunten, D. M., Colin, L., Donahue, T. M., and Moroz, V. I. (eds.),Vemus, The University of Arizona Press, Tucson, pp. 159–214.

    Google Scholar 

  • Phillips, R. J. and Malin, M. C. 1984, ‘Tectonics of Venus’,Ann. Rev. Earth Plan. Sci. 12, 411–443.

    Article  Google Scholar 

  • Podolack, M. and Cameron, A. G. W.: 1974, ‘Models of the Gaint Planets’,Icarus 22, 123–148.

    Article  Google Scholar 

  • Prinn, R. G.: 1985, ‘The Volcanoes and Coulds of Venus’,Scient. Am. 252, No. 3, 36–43.

    Google Scholar 

  • Pronin, A. A.: 1985, ‘Structure of Lakshmi Planum for an Indication of Horizontal Asthenospheric Flows on Venus’ (in Russian) unpublished manuscript, Vernadsky Institute, Moscow.

    Google Scholar 

  • Reasenberg, R. D. and Bills, B. G.: 1983, ‘Critique of “Elastic Thickness of the Venus Lithosphere Estimated from Topography and Gravity” by A. Cazenave and K. Dominh’,Geophys. Res. Lett. 10, 93–96.

    Google Scholar 

  • Ringwood, A. E. and Essene, E.: 1970, ‘Petrogenesis of Apollo 11 Basalts, Internal Constitution and Origin of the Moon’,Proc. Apollo 11 Lunar Sci. Conf., 769–799.

  • Roddy, D. J.: 1976, ‘High Explosive Cratering Analogs for Bowlshaped, Central Uplift and Multiring Impact Craters’,Proc. Lunar Sci. Conf. 7, 3027–3056.

    Google Scholar 

  • Runcorn, S. K.: 1975, ‘On the Interpretation of Lunar Magnetism’,Phys. Earth Plan. Int. 10, 327–335.

    Article  Google Scholar 

  • Runcorn, S. K. and Shrubsall, M. H.: 1968, ‘The Figure of the Moon’,Phys. Earth Plan. Int. 1, 317–325.

    Article  Google Scholar 

  • Russell, C. T.: 1978, ‘The magnetic Field of Mars: Mars 5 Evidence Re-examined’,Geophys. Res. Lett. 5, 85–88.

    Google Scholar 

  • Russell, C. T.: 1980, ‘Planetary Magnetism’,Rev. Geophys. Space Phys. 18, 77–106.

    Google Scholar 

  • Sagan, C.: 1975, ‘The Solar System’,Scient. Am. 233, No. 3, 22–31.

    Google Scholar 

  • Schildknecht, F.: 1981, ‘Untersuchungen der Bewegungsrichtungen im Verlauf lunarer seismischer Ereignisse — Beziehungen der horizontalen Bewegungsrichting zu tektonischen Strukturen der Mondkruste’, thesis, Kiel.

  • Schimerman, L. A. (ed.): 1973,NASA Lunar Cartographic Dossier, Vol. 1, Defense Mapping Agency, Aerospace Center, St. Louis.

    Google Scholar 

  • Schubert, G., Young, R. E., Cassen, P.: 1977, ‘Solid State Convection Models of the Lunar Internal Temperature’,Phil. Trans. R. Soc. Lond. A., 523–536.

  • Schultz, P. H. and Spudis, P. D.: 1983, ‘Beginning and End of Lunar Mare Volcanism’,Nature 302, 233–236.

    Article  Google Scholar 

  • Scott, D. H.: 1974, ‘The Geologic Significance of some Lunar Gravity Anomalies’,Proc. Lunar Sci. Conf. 5, 3025–3036.

    Google Scholar 

  • Scott, D. H.: 1978, ‘Mars, Highlands-Lowlands: Viking Contributions to Mariner Relative Age Studies’,Icarus 34, 479–485.

    Article  Google Scholar 

  • Shapiro, I. I.: 1967, ‘Planetary Radar Astronomy’, in Dollfus, A. (ed.), Moon and Planets, North-Holland, Amsterdam, pp. 103–125.

    Google Scholar 

  • Siegfried, R. W., II, and Solomon, S. C.: 1974, ‘Mercury: Internal Structure and Thermal Evolution’,Icarus 23, 192–205.

    Article  Google Scholar 

  • Sjogren, W. L.: 1979, ‘Mars Gravity: High-Resolution Results from Viking Orbiter 2’,Science 203, 1006–1010.

    Google Scholar 

  • Sjogren, W. L., Anderson, J. D., Phillips, R. J., and Trask, D. W.: 1976, ‘Gravity fields’, IEEE Transactions on Geoscience Electronics GE-14, 172–183.

  • Sjogren, W. L., Bills, B. G., Brikeland, P. W., Esposito, P. B., Konopliv, A. R., Mottinger, N. A., Ritke, S. J., and Phillips, R. J.: 1983, ‘Venus Gravity Anomalies and their Correlation with Topography’,J. Geophys. Res. 88, 1119–1128.

    Google Scholar 

  • Sjogren, W. L., Bills, B. G., and Mottinger, N. A.: 1984, ‘Venus: Ishtar Gravity Anomaly’,Geophys. Res. Lett. 11, 489–491.

    Google Scholar 

  • Sleep, N. H. and Phillips, R. J.: 1979, ‘An Isostatic Model for the Tharsis Province, Mars’,Geophys. Res. Lett. 6, 803–806.

    Google Scholar 

  • Solomon, S. C. and Head, J. W.: 1979, ‘Vertical Movement in Mare Basins: Relation to Mare Emplacement, Basin Tectonics and Lunar Thermal History’,J. Geophys. Res. 84, 1667–1682.

    Google Scholar 

  • Solomon, S. C. and Head, J. W.: 1980, ‘Lunar Mascon Basins: Lava Filling, Tectonics, and Evolution of the Lithosphere’,Rev. Geophys. Space Phys. 18, 107–141.

    Google Scholar 

  • Solomon, S. C. and Head, J. W.: 1982, ‘Mechanisms for Lithospheric Heat Transport on Venus: Implications for Tectonic Style and Volcanism’,J. Geophys. Res. 87, 9236–9246.

    Google Scholar 

  • Sonett, C. P., Smith, B. F., Colburn, D. S., Schubert, G., and Schwartz, K.: 1972, ‘The Induced Magnetic Field of the Moon: Conductivity Profiles and Inferred Temperature’,Proc. Lunar Sci. Conf. 3, 2309–2336.

    Google Scholar 

  • Stacey, F. D.: 1977a,Physics of the Earth, 2nd edition, Wiley, New York.

    Google Scholar 

  • Stacey, F. D.: 1977b, ‘A Thermal Model of the Earth’,Phys. Earth. Plan. Int. 15, 341–348.

    Article  Google Scholar 

  • Stephenson, A., Runcorn, S. K., and Collinson, D.W.: 1977, ‘Paleoinstensity Estimates from Lunar Samples 10017 and 10020’,Proc. Lunar Sci. Conf. 8, 679–687.

    Google Scholar 

  • Strom, R. G., Trask, N. J., and Guest, J. E.: 1975, ‘Tectonism and Volcanism on Mercury’,J. Geophys. Res. 80, 2478–2507.

    Google Scholar 

  • Stuart-Alexander, D. and Howard, K. A.: 1970, ‘Lunar Maria and Circular Basins — A Review’,Icarus 12, 440–456.

    Article  Google Scholar 

  • Sullivan, K. and Heat, J.: 1984, ‘Geology of the Venus Lowlands: Guinevere and Sedna Planitia’,Lunar Plan. Sci. XV, 836–837.

    Google Scholar 

  • Surkov, Y. A.: 1977, ‘Geochemical Studies of Venus by Venera 9 and 10 Automatic Interplanetary Stations’,Proc. Lunar Sci. Conf. 8, 2665–2689.

    Google Scholar 

  • Talwani, M., Thompson, G., Dent, B., Kahle, H. G., and Buck, S.: 1973, ‘Traverse Gevimeter Experiment’,Apollo 17, Preliminary Science Report, NASA SP-330, 13-1–13-13.

  • Taylor, S. R.: 1975,Lunar Science: A Post-Apollo View, Pergamon, New York.

    Google Scholar 

  • Thompson, T. W.: 1979, ‘A review of Earth-Based Radar Mapping of the Moon’,Moon and Planets 20, 179–198.

    Google Scholar 

  • Thompson, G. A. and Burke, D. B.: 1974, ‘Regional Geophysics of the Basin and Range Province’,Anm. Rev. Earth Plan. Sci. 2, 213–238.

    Article  Google Scholar 

  • Thurber, C. H. and Toksöz, M. N.: 1978, ‘Martian Lithospheric Thickness from Elastic Flexure Theory’,Geophys. Res. Lett. 5, 977–980.

    Google Scholar 

  • Toksöz, M. N.: 1975, ‘Lunar and Planetary Seismology’,Rev. Geophys. Space Phys. 13, No. 3, 306–311.

    Google Scholar 

  • Toksöz, M. N., Goins, N. R., and Cheng, C. H.: 1977, ‘Moonquakes: Mechanism and Relation to Tidal Stresses’,Science 196, 979–981.

    Google Scholar 

  • Toksöz, M. N., Hsui, A. T., and Johnston, D. H.: 1978, ‘Thermal Evolutions of the Terrestrial Planets’,Moon and Planets 18, 281–320.

    Article  Google Scholar 

  • Torge, W.: 1980,Geodesy, Walter de Gruyter, Berlin, New York.

    Google Scholar 

  • Toulmin, P., III, Baird, A. K., Clark, B. C., Keil, K., Rose, H. J., Jr., Christian, R. P., Evans, P. H., and Kelliher, W. C.: 1977, ‘Geochemical and Mineralogical Intertation of the Viking Inorganic Chemical Results’,J. Geophys. Res. 82, 4625–4634.

    Google Scholar 

  • Trenberth, K. E.: 1981, ‘Seasonal Variations in Global Sea Level Pressure and the Total Mass of the Atmosphere’,J. Geophys. Oceans and Atm. 86, 5238–5246.

    Google Scholar 

  • Turcotte, D. L.: 1978, ‘Flexure’,Advances in Geophys. 21, 51–86.

    Google Scholar 

  • Turcotte, D. L. and Schubert, G.: 1971, ‘Structure of the Olivine-Spinal Phase Boundary in the Descending Lithosphere’,J. Geophys. Res. 76, 7980–7987.

    Google Scholar 

  • U.S. Geological Survey: 1984,Topographic Map of Venus, 1∶5000000, V50M 6/60 RT, U. S. Geological Survey.

  • Voss, J., Weinrebe, W., Schildknecht, F., and Meissner, R.: 1976, ‘Filter Processes Applied to the Scattering Parts of lunar Seismograms for Indentifying the 300 kim Discontinuity and the Lunar Grid System’,Proc. Lunar Sci. Conf. 7, 3133–3142.

    Google Scholar 

  • Wänke, H., Dreibus, G., Plame, H., Rammensee, W., and Weckwerth, G.: 1983, ‘Geochemical Evidence for the Formation of the Moon from Material of the Earth's Mantle’,Lunar Plan. Sci. XIV, 818–819.

    Google Scholar 

  • Walcott, R. I.: 1970, ‘Flexural Rigidity, Thickness and Viscosity of the Lithosphere’,J. Geophys. Res. 75, 3941–3954.

    Google Scholar 

  • Watts, A. B.: 1978, ‘An Analysis of Isostasy in the World's Oceans, 1. Hawaiian-Emperor Seamount Chain’,J. Geophys. Res. 83, 5989–6004.

    Google Scholar 

  • Watts, A. B. and Cochran, J. R.: 1974, ‘Gravity Anomalies and Flexure of the Lithosphere along the Hawaiian-Emperor Seamount Chain’,Geophys. J. R. Astr. Soc. 38, 119–141.

    Google Scholar 

  • Watts, A. B., Bodine, J. H., and Steckler., M. S.: 1980, ‘Observations of Flexure and the State of Stress in the Oceanic Lithospere’,J. Geophys. Res. 85, 6369–6376.

    Google Scholar 

  • Watts, C. B.: 1963, ‘Marginal Zone of the Moon’, Astron. Papers American Ephemeris 17.

  • Weinrebe, W., Voss, J., and Meissner, R.: 1976, ‘Die Geschwindigkeitsstruktur der Mondlithosphäse aus Seismogrammontagen der künstlichen Einschläge’,Geol. Jb. E7, 93–100.

    Google Scholar 

  • Wilhelms, D. E.: 1976, ‘Secondary Impact Craters of Lunar Basins’,Proc. Lunar Sci. Conf. 7, 2883–2910.

    Google Scholar 

  • Willemann, R. J. and Turcotte, D. L. 1982, ‘The Role of Lithospheric Stress in Support of the Tharsis Rise’,J. Geophys. Res. 87, 9793–9801.

    Google Scholar 

  • Wilson, L.: 1982, ‘A Soviet View of the Venusian Surface’,Nature 296, 607–608.

    Article  Google Scholar 

  • Wise, D. U., Golombek, M. P., and McGill, G. E.: 1979, ‘Tectonic Evolution of Mars’,J. Geophys. Res. 84, 7934–7939.

    Google Scholar 

  • Wiskerchen, M. J. and Sonett, C. P.: 1978, ‘On the Detectability of a Metallized, Lunar Core’,Proc. Lunar Sci. Conf. 9, 3113–3124.

    Google Scholar 

  • Wood, J. A.: 1979,The Solar System, Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Wood, J. A., Buck, W. R., Anders, E., Morgan, J. W., Stolper, E., Anderson, D. L., Kaula, W.M., Consolmagno, G. J., Ringwood, A. E., and Wänke, H.: 1981, ‘Geophysical and Cosmochemical Constraints on Properties of Mantles of the Terrestrial Planets’, inBasaltic Volcanism Study Project: Basaltic Volcanism of the Terrestrial Planets, Pergamon, New York, pp. 633–699.

    Google Scholar 

  • Wu, S. S. C.: 1978, ‘Mars Synthetic Topographic Mapping’Icarus 33, 417–440.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution No. 309, Institut für Geophysik der Universität, Kiel, F.R.G.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janle, P., Meissner, R. Structure and evolution of the terrestrial planets. Surv Geophys 8, 107–186 (1986). https://doi.org/10.1007/BF01902412

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01902412

Keywords

Navigation