Skip to main content
Log in

Numerical simulation of facilitated transport of carbon dioxide in a condensate film

Numerische Simulation des beförderten Transportes von Kohlendioxid in einem Kondensationsfilm

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

Numerical analysis was performed for the effects of chemical reactions on the behavior of carbon dioxide absorbed in a condensate film. A condensate film flowing on a vertical surface under the influence of the combined effects of the vapor shear and gravity was chosen as a model problem. Convective flux towards the wall surface played a significant role in the absorption characteristics. Concentrations of the carbon dioxide and bicarbonate ion in the film increased as the condensation proceeded. The difference between the two concentrations at a same longitudinal position decreased as the condensation proceeded. Resistivity of the condensate film was smaller for a thicker condensate film with larger concentration of carbon dioxide in the vapor phase.

Zusammenfassung

In einer numerischen Studie wurde der Einfluß chemischer Reaktionen auf das Verhalten von in einem Kondensationsfilm absorbierten Kohlendioxid untersucht. Als Modellfall wurde ein Kondensatfilm gewählt, der an einer vertikalen Wand unter dem kombinierten Einfluß von Schubspannung (bewirkt durch die Dampfströmung) und Schwerkraft abfließt. Die Konvektionsströmung zur Wand beeinflußt das Absorptionsverhalten entscheidend. Im Verlauf des Kondensationsprozesses steigt die Konzentration des Kohlendioxids und der Bikarbonationen im Film an. Der Unterschied zwischen den beiden Konzentrationen an der gleichen Längenkoordinate verringerte sich im Verlauf des Kondensationsvorganges. Der Widerstand des Kondensationsfilms war bei dickerem Film und höherer Konzentration des Kohlendioxids in der Dampfphase geringer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c pl :

specific isobaric heat capacity of liquid

[c T ]:

molar density of total carbonic species

D :

diffusion coefficient

ℱ:

Faraday constant

Fr :

Froude number,U 2 /g x

g :

gravitational acceleration

H :

Henry constant

[j]:

molar density of speciesj

\(K_{H_2 CO_3 } \cdot K_{H_2 O} \) :

ionic dissociation equilibrium constants for carbonic acid and water, respectively

k 1,k 2 :

forward rate constants for reactions (A) and (B), respectively

k′ 1,k′ 2 :

reverse rate constants for reactions (A) and (B), respectively

L :

latent heat of condensation

N :

molar flux

\(m_{CO_2 } \) :

absorption flux

Ph :

phase change number

Pr 1 :

liquid Prandtl number

R :

resistivity of condensate

ℛ:

universal gas constant

Sh :

Sherwood number

T :

temperature

ΔT :

vapor-to-wall temperature difference

U :

free stream velocity

U, V :

velocity components of vapor boundary layer inx-andy-directions, respectively

u, v :

velocity components of condensate film inx- andy-directions, respectively

x, y :

coordinates parallel and normal to wall, respectively

α :

vapor phase mass transfer coefficient

β :

suction parameter

δ :

condensate film thickness

ϱ :

density

φ :

diffusion potential

Λ j :

limiting conductance of ionic speciesj

Ψ :

[HCO 3 ]/[CO2]

Ω :

[CO2]/[CO2]

CO2 :

carbon dioxide

H2CO3 :

carbonic acid

H2O:

water

HCO 3 :

bicarbonate ion

H+ :

hydrogen ion

i :

liquid-vapor interface

l :

liquid

OH :

hydroxide ion

v :

vapor/gas mixture

w :

wall

∞:

free stream

References

  1. McNaught, J. M.: An assessment of design methods for condensation of vapors from a non-condensing gas, in Heat Exchangers, Theory and Practice (eds. by Taborek, G. F.; Hewitt, G. F.; Afgan, N.), Washington, DC.: Hemisphere Publishing Corp. (1983), 35–53

    Google Scholar 

  2. Jensen, M. K.: Condensation with noncondensables and in multicomponent mixtures, in Heat Transfer Equipment Design (eds. Shah, R. K.; Subbarao, E. C.; Mashelkar, R. A.), Washington, DC: Hemisphere Publishing Corp. (1988), 497–512

    Google Scholar 

  3. Fujii, T.; Uehara, H.; Mihara, K.: Forced convective condensation in the presence of noncondensables and superheating: Trans. JSME 44-B (1978), 600–607: also Fujii, T.; Mihara, H.: Forced convection condensation in the presence of noncondensables. Rept. Res. Inst. Industrial Science, Kyushu University 71 (1980), 29–35

    Google Scholar 

  4. Fujii, T.; Uehara, H.; Mihara, K.; Takashima, H.: Body force convection condensation in the presence of noncondensables. Rept. Res. Inst. Industrial Science, Kyushu University 66 (1977), 53–80

    Google Scholar 

  5. Rose, J. W.: Approximate equations for forced convection condensation in the presence of a non-condensing gas on a flat plate and horizontal tube. Int. J. Heat Mass Transfer 23 (1980), 539–546

    Google Scholar 

  6. Levich, B. G.; Kishinevsky, T.: Aeration and deaeration processes in large power plant condensers. Heat Transfer Engng. 11 (1990), 19–31

    Google Scholar 

  7. Meldon, J. H.; Stroeve, P.; Gregoire, C. E.: Facilitated transport of carbon dioxide. Chem. Eng. Commun. 16 (1982), 263–300

    Google Scholar 

  8. Kiba, K.; Inoue, S.; Suematsu, H.; Sawada, H.; Hirano, T.; Momose, S.: Production of ultrapure water using a distillation system. 56th Annual Meeting of the Chem. Eng. Japan (1991) 345

  9. Kern, D. O.: The hydraton of carbon dioxide. J. Chem. Education 37 (1960), 14–23

    Google Scholar 

  10. Shekriladze, I. G.; Gomerauli, V. I.: Theoretical study of laminar film condensation of flowing vapor. Int. J. Heat Mass Transfer 9 (1966) 581–591

    Google Scholar 

  11. Fujii, T.; Katoh, Y.: Laminar film condensation of a binary miscible vapor on a flat plate. Trans. JSME 46-B (1980) 306–312

    Google Scholar 

  12. Tanaka, H.: On expressions for local Nusselt number and local Sherwood number concerning simultaneous heat and mass transfer in free convection from a vertical plate. Rept. Res. Inst. Industrial Science, Kyushu University 78 (1985), 47–52

    Google Scholar 

  13. JSME: JSME Data Book; Thermophysical properties of fluids. Tokyo: JSME 1982.

  14. Usdowski, E.: Reactions and equilibria in the system CO2-H2O and CaCO3-CO2-H2O. N. Jb. Miner. Abh. 144 (1982), 148–171

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nozu, S., Inoue, S. & Inaba, H. Numerical simulation of facilitated transport of carbon dioxide in a condensate film. Wärme - und Stoffübertragung 28, 489–496 (1993). https://doi.org/10.1007/BF01539680

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01539680

Keywords

Navigation