Skip to main content
Log in

Pharmacokinetics, tissue distribution, and in vivo antitumor effects of the antimelanoma immunotoxin ZME-gelonin

  • Original Article
  • Monoclonal Antibodies, Immunotoxin, Immunotherapy, Pharmacokinetics
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Antibody ZME-018 is directed against the gp240 glycoprotein on the surface of more than 80% of human melanoma cell lines and fresh biopsy specimens. Previous studies in our laboratory described the in vitro cytotoxicity and specificity of an immunoconjugate composed of mAb ZME-018 and the plant toxin gelonin. The present study describes the in vivo pharmacokinetics and therapeutic effects of ZME-gelonin in human xenograft/nude mouse models. Pharmacokinetic studies of125I-labeled ZME-018 and ZME-gelonin demonstrated a shorter terminal-phase plasma half-life of the immunoconjugate than native ZME (20.6 h compared to 41.3 h). The initial volume of distribution of the ZME-gelonin was also higher compared to that of ZME alone (2.85 ml compared to 1.91 ml) suggesting an enhanced distribution of the conjugate outside the vasculature. The corresponding area under the concentration/time curve for the ZME-gelonin conjugate was 40% lower than that of ZME alone (80.8 compared to 139.6 μCi·ml−1 x min). In nude mice bearing well-developed human tumor A375 melanoma xenografts, administration of125I-labeled ZME and ZME-gelonin resulted in tumor-to-blood ratios of 1.9±0.5 and 1.5±0.6 respectively by 72 h. Compared with ZME, ZME-gelonin conjugate caused an increase in the content of radiolabel in kidney, spleen and liver. Treatment of nude mice bearing well-developed (150 mm3) s.c. A375-M xenografts with divided doses of ZME-gelonin, ZME, gelonin, or saline resulted in suppression of tumor growth in the immunotoxin group but virtually no retardation of tumor growth in the control groups. Using a murine model for a rapidly growing lethal metastatic human melanoma, treatment with ZME-gelonin resulted in a mean survival of 44 days, a 213% increase in mean survival time compared with the saline treatment (14.2±2 day survival). Given these encouraging results, we are proceeding with further preclinical development of this immunotoxin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blakey DC, Thorpe PE (1988) An overview of therapy with immunotoxins containing ricin or its A-chain. Antibody Immunoconjugates Radiopharmaceuticals 1: 1–16

    Google Scholar 

  2. Blakey DC, Watson GJ, Knowles PO, Thorpe PE (1987) Effect of chemical deglycosylation of ricin A chain on the in vivo fate and cytotoxic activity of an immunotoxin composed of ricin-Achain and anti-Thy 1.1 antibody. Cancer Res 47: 947–952

    PubMed  Google Scholar 

  3. Cheung NK, Lazarus H, Miraldi FD, Abramowsky CR, Kallick S, Saarineen UM, Spitzer T, Strandjord SE, Coccia PF, Berger NA (1987) Ganglioside GD2 specific monoclonal antibody 3F8: phase I study in patients with neuroblastoma and malignant melanoma. J Clin Oncol 5: 1430–1440

    PubMed  Google Scholar 

  4. Goldenberg DM, Kim EE, Deland F, VanNagell JR Jr, Javadpour, N (1980) Clinical radioimmunodetection of cancer with radioactive antibodies to human chronic gonadotropin. Science 208: 1284–1286

    PubMed  Google Scholar 

  5. Goldenberg DM, Kim EE, Deland F, Spremulli E, Nelson MO, Gockerman JP, Primus FJ, Corgan RL, Alpert E (1980) Clinical tudies on radioimmunodetection of tumors containing alphafeto protein. Cancer 45: 2500–2505

    PubMed  Google Scholar 

  6. Hayes DF, Zalutsky MR, Kaplan W, Noska M, Thor A, Colcher D, Kufe DW (1986) Pharmacokinetics of radiolabeled monoclonal antibody B6.2 in patients with metastatic breast cancer. Cancer Res 46: 3157–3163

    PubMed  Google Scholar 

  7. Houghton AN, Mintz D, Cardon-Cardo C, Welt S, Fliegel B, Vadhan S, Carswell E, Melamed M, Oettgen HE, Old LJ (1985) Mouse monoclonal IgG3 antibody detecting GD3 ganglioside: a phase I trial in patients with malignant melanoma. Proc Natl Acad Sci USA 82: 1242–1246

    PubMed  Google Scholar 

  8. Lambert JM, Blattler WA, McIntyre GD, Goldmacher VS, Scott CJ Jr (1988) Immunotoxins containing single chain ribosome-inactivating proteins. Cancer Treat Res 37: 175–209

    PubMed  Google Scholar 

  9. Lambert JM, Senter PD, Young AY, Blattler WA, Goldmacher VS (1985) Purified immunotoxins that are reactive with human lymphoid cells. Monoclonal antibodies conjugated to ribosomeinactivating proteins, gelonin and pokeweed antiviral proteins. J Biol Chem 260: 12035–12041

    PubMed  Google Scholar 

  10. Larson SM, Brown JP, Wright PN, Carrasquillo JA, Hellstrom I, Hellstrom KE (1983) Imaging of melanoma with I-131 labeled monoclonal antibodies. J Nucl Med 24: 123–129

    PubMed  Google Scholar 

  11. Lindmo T, Boven E, Cullta F, Fedorko J, Bunn PAJ (1984) Determination of immuno reactive fraction of radiolabeled monoclonal antibodies by linear extrapolation to binding at infinite antigen excess. J Immunol Methods 72: 77–79

    PubMed  Google Scholar 

  12. Mack JP, Carrel S, Forni M, Ritschard J, Donath A, Alberto P (1980) Tumor localization of radiolabeled antibodies against carcinoembryonic antigen in patients with carcinoma. N Engl J Med 305: 5

    Google Scholar 

  13. Murray JL, Rosenblum MG, Lamki L, Haynie TP, Glenn HJ, Jahns M, Plager C, Hersh EM, Unger MW, Carlo DJ (1987) Radioimmunoimaging in malignant melanoma patients using111In-labeled anti-melanoma monoclonal antibody (ZME-018) to a high MW antigen Kd240. NCI Monogr 3: 3

    PubMed  Google Scholar 

  14. Pastan I, Willingham MC, Fitzgerald DJF (1986) Immunotoxins. Cell 47: 641

    PubMed  Google Scholar 

  15. Press OW, Martin PJ, Thorpe PE, Vitetta ES (1988) Ricin A-chain containing immunotoxins directed against different epitopes on the CD2 molecule differ in their ability to kill normal and malignant T cells. J Immunol 141: 4410

    PubMed  Google Scholar 

  16. Priker R, Fitzgerald DJP, Hamilton TC, Ozols RF, Laird W, Frankel AE, Willingham MC, Pastan I (1985) Characterization of immunotoxins directed against ovarian cancer cell lines. J Clin Invest 76: 1261

    PubMed  Google Scholar 

  17. Raso V (1987) Mediation of toxin entry into cells via naturally occurring receptor sites. In: Vogel CW (ed) Immunoconjugates. Oxford University Press. New York, pp 116

    Google Scholar 

  18. Raso V, Basala M (1984) A highly cytotoxic human transferrinricin A chain conjugate used to select receptor-modified cells. J Biol Chem 259: 1143

    PubMed  Google Scholar 

  19. Reimann KA, Goldmacher VS, Lambert JM, Chalifaux LV, Cook SF, Schlossman SF, Letvin NL (1988) In vivo administration of lymphocyte-specific monoclonal antibodies in nonhuman primates. Cytotoxic effects of an anti-Thy 1.1-gelonin immunotoxin. J Clin Invest 82: 129

    PubMed  Google Scholar 

  20. Rosenblum MG, Murray JL, Cheung L, Rifkin R, Salmon S, Bartholomew R (1991) A specific and potent immunotoxin composed of antibody ZME-018 and the plant toxin gelonin. Mol Biother 3: 6

    PubMed  Google Scholar 

  21. Rosenblum MG, Kohr W, Beatty K, Beatty WF, Friedman P (1993) Sequencing, cloning and expression of recombinant gelonin toxin. Proc Am Assoc Cancer Res 34 abstract 2853

  22. Scott CF Jr, Goldmacher VS, Lambert JM, Jackson JM, McIntyre JD (1987) Immunotoxins composed of monoclonal anti-transferrin receptor antibody linked by disulfide bond to ribosome inactivating protein gelonin: potent in vitro and in vivo effect against human tumors. J Natl Cancer Inst 79: 1163

    PubMed  Google Scholar 

  23. Sivam G, Pearson JW, Bohn W, Oldham RC, Sadoff JC, Morgan AC Jr (1987) Immunotoxins to human melanomaassociated antigen: comparison of gelonin with ricin and other A chain conjugates. Cancer Res 47: 3169

    PubMed  Google Scholar 

  24. Stirpe F, Olsnes S, Pihl A (1980) Gelonin, a new inhibitor of protein synthesis, nontoxic to intact cells isolation, characterization and preparation of cytotoxic complexes with concanavalin A. J Biol Chem 255: 6947

    PubMed  Google Scholar 

  25. Thorpe PE, Wallace PM, Knowles PO, Relf MG, Brown AN (1987) New coupling agents for synthesis of immunotoxins containing a hindered di-sulfide bond with improved stability in vivo. Cancer Res 47: 5924

    PubMed  Google Scholar 

  26. Vitetta ES, Krolick KA, Miyama-Inaba M, Cushley W, Uhr JW (1983) Immunotoxins: a new approach to cancer therapy. Science 219: 644

    PubMed  Google Scholar 

  27. Vitetta ES, Fulton JR, May RD, Till M, Uhr JW (1987) Redesigning natures poisons to create anti-tumor reagents. Science 238: 1098

    PubMed  Google Scholar 

  28. Wawrzynczak EJ, Cumber AJ, Henry RV, May J, Newell DR, Parnell GD, Worrell NR, Forrester JA (1990) Pharmacokinetics in the rat of a panel of immunotoxins made with abrin A chain, ricin A chain, gelonin and momordin. Cancer Res 50: 7519

    PubMed  Google Scholar 

  29. Wilbur DS, Hadley SW, Hylarides MD, Abrams PG, Beaumier PA, Morgan AC, Reno JM, Fritzberg AR (1989) Development of a stable radioiodinating reagent to label monoclonal antibodies for radiotherapy of cancer. J Nucl Med 30: 216

    PubMed  Google Scholar 

  30. Wilson BS, Imai K, Natali PG, Ferrone S (1981) Distribution and molecular characterization of a cell-surface and cytoplasmic antigen detectable in human melanoma cells with monoclonal antibodies. Int J Cancer 28: 293

    PubMed  Google Scholar 

  31. Worrel NR, Cumber AJ, Parnell GD, Mirza A, Forrester JA, Ross WC (1986) Effect of linkage variation on pharmacokinetics of ricin A chain antibody conjugates in normal rats. Anti-Cancer Drug Design 1: 179

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research conducted, in part, by the Clayton Foundation for Research

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mujoo, K., Cheung, L., Murray, J.L. et al. Pharmacokinetics, tissue distribution, and in vivo antitumor effects of the antimelanoma immunotoxin ZME-gelonin. Cancer Immunol Immunother 40, 339–345 (1995). https://doi.org/10.1007/BF01519635

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01519635

Key words

Navigation