Skip to main content
Log in

Surface structures in ammonia synthesis

  • Ammonia Synthesis
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Ammonia synthesis is one of the most structure sensitive catalytic reactions. Reaction studies using single crystals showed the open (111) and (211) crystal faces of iron and the\((11\bar 21)\) and\((11\bar 20)\) crystal faces of rhenium to be most active, while the close packed iron (110) and rhenium (0001) crystal faces were almost inactive. These studies suggest that seven (C7) and eight (C8) metal atom coordinated surface sites, which are available only on the active surfaces, are very active for the dissociation of dinitrogen, the limiting factor in the reaction rate under most experimental circumstances. In this paper, the experimental evidence for the existence of the C7 sites in iron is reviewed. In addition, the role of potassium in creating a different active site which is less sensitive to the iron surface structure is discussed. Newly developed surface science techniques should permit investigations into the dissociation of dinitrogen at the C7 sites and how the resulting chemisorbed nitrogen atoms are removed to allow for reaction turnover. Advances in LEED-surface crystallography, allowing detailed determination of relaxation in the clean metal surfaces and adsorbate induced restructuring of the metal surface, reopen the question of the real structure of the active sites in the presence of atomic nitrogen, or atomic nitrogen coadsorbed with potassium and oxygen. Investigation of the dynamics of surface restructuring involving the movements of both the substrate metal atoms and the chemisorbed atoms by surface diffusion becomes feasible by the availability of the high pressure/high temperature STM system built in our laboratory. Studies of the surface structures of the model iron catalysts under dynamic conditions, using 0.1 ms time resolution and atomic spatial resolution under reaction conditions are now possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Tamura, in:Catalytic Ammonia Synthesis: Fundamentals and Practice, ed. J.R. Jennings (Plenum Press, New York, 1991) ch. 1.

    Google Scholar 

  2. S.A. Topham, in:Catalysis, Science and Technology, Vol. 7 (Springer, Berlin, 1985).

    Google Scholar 

  3. R. Brill, Ber. Bunsenges. Phys. Chem. 15 (1971) 455.

    Google Scholar 

  4. R. Brill, E.L. Richter and E. Ruch, Angew. Chem. 6 (1967) 882.

    Google Scholar 

  5. G. Ertl, S.B. Lee and M. Weiss, Surf. Sci. 114 (1982) 527;

    Google Scholar 

  6. G. Ertl, M. Weiss and S.B. Lee, Chem. Phys. Lett. 60 (1979) 391;

    Google Scholar 

  7. Z. Paal, G. Ertl and S.B. Lee, Appl. Surf. Sci. 8 (1981) 231.

    Google Scholar 

  8. T.G. Rucker, K. Franck, D. Colomb, M.A. Logan and G.A. Somorjai, Rev. Sci. Instr. 58 (1987) 2292.

    Google Scholar 

  9. P.R. Watson, M.A. Van Hove and K. Hermann, NIST Surface Structure Database (SSD), NIST Standard Reference Data Program, Gaithersburg, MD (1993).

  10. U. Starke, M.A. Van Hove and G.A. Somorjai, Progr. Surf. Sci., in press.

  11. J. Sokolov, F. Jona and P.M. Marcus, Phys. Rev. B. 33 (1986) 1397.

    Google Scholar 

  12. J. Sokolov, H.D. Shih, U. Bardi, F. Jona and P.M. Marcus, J. Phys. C 17 (1984) 371.

    Google Scholar 

  13. J. Sokolov, F. Jona and P.M. Marcus, J. Solid State Commun. 49 (1984) 307.

    Google Scholar 

  14. D.R. Strongin, J. Carrazza, S.R. Bare and G.A. Somorjai, J. Catal. 103 (1987) 289.

    Google Scholar 

  15. D.R. Strongin and G.A. Somorjai, in:Catalytic Ammonia Synthesis: Fundamentals and Practice, ed. J.R. Jennings (Plenum Press, New York, 1991) ch. 1.

    Google Scholar 

  16. R. Imbihl, R.J. Behm, G. Ertl and W. Moritz, Surf. Sci. 123 (1982) 129.

    Google Scholar 

  17. W. Moritz, R. Imbihl, R.J. Behm, G. Ertl and T. Matsushima, J. Chem. Phys. 83 (1985) 1959.

    Google Scholar 

  18. S. Bare, D.R. Strongin and G.A. Somorjai, J. Phys. Chem. 90 (1986) 4726.

    Google Scholar 

  19. D.R. Strongin and G.A. Somorjai, J. Catal. 118 (1989) 99.

    Google Scholar 

  20. D.R. Strongin and G.A. Somorjai, J. Catal. 109 (1988) 51.

    Google Scholar 

  21. E.L. Garfunkel and G.A. Somorjai, in:Physics and Chemistry of Alkali Metal Adsorption, eds. H.P. Bonzel, A.M. Bradshaw and G. Ertl (Elsevier, Amsterdam, 1989).

    Google Scholar 

  22. B. McIntyre, G.A. Somorjai and M. Salmeron, Rev. Sci. Instr. 64 (1993) 687.

    Google Scholar 

  23. B. McIntyre, M. Salmeron and G.A. Somorjai, Catal. Lett. 14 (1992) 263.

    Google Scholar 

  24. J.C. Dunphy, B.J. McIntyre, J. Gomez, D.F. Ogletree, G.A. Somorjai and M. Salmeron, J. Chem. Phys., submitted (1993).

  25. J.C. Dunphy, P. Sautet, D.F. Ogletree, O. Dabbousi and M. Salmeron, Phys. Rev. B 47 (1993) 2320.

    Google Scholar 

  26. J.C. Dunphy, P. Sautet, D.F. Ogletree and M. Salmeron, J. Vac. Sci. Technol. A 11 (1993) 2145.

    Google Scholar 

  27. B. McIntyre, M. Salmeron and G.A. Somorjai, to be published.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Somorjai, G.A., Materer, N. Surface structures in ammonia synthesis. Top Catal 1, 215–231 (1994). https://doi.org/10.1007/BF01492277

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01492277

Keywords

Navigation