Skip to main content
Log in

Morphogenesis of plant cell walls at the supramolecular level: Internal geometry and versatility of helicoidal expression

  • Review Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

The concept of the cell wall organized in a helicoidal pattern was outlined. When studied in transmission electron microscopy, the observed textures appear as a deceptive figure,i.e., as a “trompe l'oeil”. Difficulties—both technological and visual in the reconstitution of the actual geometry (exposure of the microfibrillar framework, 3-dimensional and 4-dimensional restoration), and the interest of simple modelling to understand the changes in cellulose orientation according to space and time are emphasized.

The morphogenesis of helicoidal walls presents two main characteristics: it is both very defined and flexible, thus adaptable to varied programs of differentiation and to different environmental conditions. The observations of various cell examples and of responses to experimental treatments, lead to the following considerations: a) the shift of cellulose occurs continuously with time through a constant mutual angle. The wall seems to be built up as an indefinite continuum and forms a monotonous oscillatory system (unvarying motion); b) the shift of cellulose occurs through a mutual angle variable with time (varying motion, change from monotonous helicoid to bimodal helicoid, or sporadic bursts with arrested motion).

The helicoidal wall appears as a fibrous composite with multifunctional possibilities ranging from fluidity to stiffness. The helicoidal assembly is remarkably adaptable to different physiological conditions of growth and specialization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeyesekera RM, Willison JHM (1987) A spiral helicoid in a plant cell wall. Cell Biol Int Reports 11: 75–79

    Google Scholar 

  • Albersheim P, Darvill AG, Davis KR, Lau JM, McNeil M, Sharp JK, York WS (1985) Why study the structure of biological molecules? In:Dugger WM, Bartnicki-Garcia S (eds) Structure, function and biosynthesis of plant cell walls. American Soc Plant Physiol, Riverside, pp 19–51

    Google Scholar 

  • Bartnicki-Garcia S (1984) Kingdoms with walls. In:Dugger WM, Bartnicki-Garcia S (eds) Structure, function and biosynthesis of plant cell walls. American Soc Plant Physiol, Riverside, pp 1–18

    Google Scholar 

  • Bonfante-Fasolo P, Vian B (1984) Wall texture in the spore of a vesicular-arbuscular mycorrhizal fungus. Protoplasma 120: 51–60

    Google Scholar 

  • — —,Testa B (1986) Ultrastructural localization of chitin in the cell wall of a fungal spore. Biol Cell 57: 265–270

    Google Scholar 

  • Bonnet N, Quintana C, Favard P, Favard N (1985) Threedimensional graphical reconstruction from HVEM stereoviews of biological specimens by mean of a microcomputer. Biol Cell 55: 125–138

    PubMed  Google Scholar 

  • Bouligand Y (1972) Twisted fibrous arrangement in biological materials and cholesteric mesophases. Tissue and Cell 4: 189–217

    PubMed  Google Scholar 

  • — (1986) Theory of microtomy artefacts in arthropod cuticle. Tissue and Cell 18: 621–643

    Google Scholar 

  • Carpita NC (1985) Tensile strength of cell walls of living cells. Plant Physiol 79: 485–488

    Google Scholar 

  • Catesson AM (1982) Cell wall architecture in the secondary sieve tubes ofAcer andPopulus. Ann Bot 49: 131–134

    Google Scholar 

  • Chou TW, McCullough RL, Pipes RB (1986) Composites. Scientific American 255: 167–177

    Google Scholar 

  • Cosgrove D (1986) Biophysical control of plant cell growth. Ann Rev Plant Physiol 37: 377–405

    Google Scholar 

  • Cox G, Juniper BE (1983) High voltage electron microscopy of whole, critical-point dried plant cells. Fine cytoskeletal elements in the mossBryum tenuisetum. Protoplasma 115: 70–80

    Google Scholar 

  • Crang RE, Pechak DG (1978) Serial section reconstruction of the black yeast,Aureobasidium pullulans by means of high voltage electron microscopy. Protoplasma 96: 225–234

    Google Scholar 

  • Czaninski Y, Monties B (1982) Étude cytochimique ultrastructurale des parois du bois de Peuplier après extraction ménagée. CR Acad Sci Paris 295: 551–556

    Google Scholar 

  • Davidson MT, Garland PB (1977) Structure of mitochondria and vacuoles ofCandida utilis andSchizosaccharomyces pombe studied by electron microscopy of serial thin sections and model building. J Gen Microbiol 98: 147–153

    PubMed  Google Scholar 

  • Emons AC (1986 a) Cell wall texture in root hairs of the genusEquisetum. Can J Bot 64, in press

  • - (1986 b) A helix model for helicoidal cell wall deposition. In:Vian B,Reis D,Goldberg R (eds) Cell Walls' 86, Paris, pp 30–33

  • —,Wolters-Art MC (1983) Cortical microtubules and microfibril deposition in the cell wall of root hairs ofEquisetum hyemale. Protoplasma 117: 68–81

    Google Scholar 

  • Fry SC (1985) Primary cell wall metabolism. In:Miflin BJ (ed) Oxford Survey of plant molecular and cell biology. Clarendon, Oxford, pp 1–42

    Google Scholar 

  • — (1986) Cross-linking of matrix polymers in the growing cell walls of Angiosperms. Ann Rev Plant Physiol 37: 165–186

    Google Scholar 

  • Giraud-Guille MM (1986) Direct visualization of microtomy artefacts in sections of twisted fibrous extracellular matrices. Tissue and Cell 18: 603–620

    PubMed  Google Scholar 

  • Gourret JP (1981) Intérêt de la platine goniométrique pour l'étude d'analogues biologiques de cristaux-liquides à structures cholesteriques. Bull Soc Bot Fr 128: 55–59

    Google Scholar 

  • Gunning BES, Hardham AR (1982) Microtubules. Ann Rev Plant Physiol 33: 351–398

    Google Scholar 

  • Halversum LJ, Stacey G (1986) Signal exchange in plant-microbe interactions. Microbiol Rev 50: 193–225

    PubMed  Google Scholar 

  • Harada H,Cote WA (1985) Structure of wood. In:Higuchi T (ed) Biosynthesis and biodegradation of wood components

  • Harche M (1986) Un type original d'architecture pariétale: l'épiderme foliaire de l'Alfa (Stipa tenacissima). CR Acad Sci 303: 131–134

    Google Scholar 

  • Harris N (1986) Organization of the endomembrane system. Ann Rev Plant Physiol 37: 73–92

    Google Scholar 

  • Hepler PK (1976) Plant microtubules. In:Bonner J, Varner JE (eds) Plant biochemistry. Academic Press, New York, pp 147–187

    Google Scholar 

  • —,Fosket DE (1971) The role of microtubules in vessel member differentiation. Protoplasma 72: 213–236

    Google Scholar 

  • Herth W (1985) Plant cell wall formation. In:Robards AW (ed) Botanical microscopy 1985. Oxford University Press, Oxford, pp 285–310

    Google Scholar 

  • Itoh T (1976) Microfibrillar orientation of radially enlarged cells of coumarin and colchicine-treated pine seedlings. Plant and Cell Physiol 17: 385–398

    Google Scholar 

  • Jarvis MC (1984) Structure and properties of pectin gels in plant cell walls. Plant Cell Environm 7: 153–164

    Google Scholar 

  • Juniper BE, Lawton JR, Harris PJ (1981) Cellular organelles and cell wall formation in fibres from the flowering stem ofLolium temulentum L. New Phytol 89: 609–619

    Google Scholar 

  • Kishi K, Harada H, Saiki H (1979) An electron microscopy study of the layered structure of the secondary wall in vessels. Mokuzaî Gakkaishi 25: 521–527

    Google Scholar 

  • — — — (1981) The structure of the primary wall of vessels in hardwood. J Soc Mat Sc 30: 673–678

    Google Scholar 

  • Lamport DTA (1986) The primary cell wall: a new model. In:Young RA, Rowell R (eds) Cellulose: structure, modification and hydrolysis. Wiley Interscience, New York, in press

    Google Scholar 

  • -Muldoon EP,Kieliszewski JW,Willard JJ,Terrune B,Everdeen D (1986) Molecular design of a molecular fabric. In:Vian B,Reis D,Goldberg R (eds) Cell Walls' 86. Paris, pp 8–11

  • Lang JM, Eisinger WR, Green PB (1982) Effects of ethylene on the orientation of microtubules and cellulose microfibrils of pea epicotyl cells with polylamellate cell walls. Protoplasma 110: 5–14

    Google Scholar 

  • Levy S (1986) The colchicine response ofNitella cell walls: a druginduced deposition of helicoidally oriented microfibrils. In:Vian B,Reis D,Goldberg R (eds) Cell Walls' 86. Paris, pp 66–67

  • -Neville AC (1986) Computer methods for 3-dimensional ultrastructural modelling and predictions of dynamic changes in the cell wall during growth. In:Vian B,Reis D,Goldberg R (eds) Cell Walls' 86, Paris, pp 18–19

  • Liberman M,Matar D,Catesson AM (1986) Architectural diversity of the sieve cell walls. In:Vian B,Reis D,Goldberg R (eds) Cell Walls' 86. Paris, pp 76–77

  • Livolant F, Giraud MM, Bouligand Y (1978) A goniometric effect observed in sections of twisted fibrous material. Biol Cell 31: 159–168

    Google Scholar 

  • Lloyd CW (1984) Toward a dynamic helical model for the influence of microtubules on wall patterns in plants. Int Rev Cytol 86: 1–51

    Google Scholar 

  • - (1987) The plant cytoskeleton: the impact of fluorescence microscopy. Ann Rev Plant Physiol, in press

  • —,Seagull RW (1985) A new spring for plant cell biology: microtubules as dynamic helices. Trends Biochem Sc 10: 476–478

    Google Scholar 

  • MacLachlan G, Fevre M (1982) An overview of cell wall biosynthesis. In:Lloyd CW (ed) The cytoskeleton in plant growth and development. Academic Press, London, pp 127–146

    Google Scholar 

  • McNeil M, Darvill AG, Fry SC, Albersheim P (1984) Structure and function of the primary cell wall of plants. Ann Rev Biochem 53: 625–663

    PubMed  Google Scholar 

  • Meekes HTHM (1986) Inhibition and recovery of cell wall formation in root hairs ofCeratopteris thalictroides. J Exp Bot 37: 1201–1210

    Google Scholar 

  • Mizuta S, Wada S (1981) Microfibrillar structure of growing cell walls in a coenocytic alga,Boergesenia forbesii. Bot Mag 94: 343–353

    Google Scholar 

  • Moore PJ, Darvill AG, Albersheim PA, Staehelin LA (1986) Immunogold localization of xyloglucan and rhamnogalacturonan I in the cell walls of suspension-cultured sycamore cells. Plant Physiol 82: 787–794

    Google Scholar 

  • Mueller SC, Brown RM (1982) The control of cellulose microfibril deposition in the cell wall of higher plants: II. Freeze-fracture microfibril patterns in maize seedling tissues following experimental alteration with colchicine and ethylene. Planta 154: 501–515

    Google Scholar 

  • Nanko S, Saiki H, Harada H (1978) Cell wall structure of the sclereids in the secondary phloem ofPopulus euamericana. Mozukaî Gakkaishi 24: 362–368

    Google Scholar 

  • Neville AC (1985) Molecular and mechanical aspect of helicoid development in plant cell walls. Bio Essays 3: 4–8

    Google Scholar 

  • —,Levy S (1984) Helicoidal orientation of cellulose microfibrils inNitella opaca internode cells: ultrastructure and computed theoretical effects of strain reorientation during wall growth. Planta 162: 370–384

    Google Scholar 

  • Neville AC,Levy S (1985) The helicoidal concept in plant cell wall ultrastructure and morphogenesis. In:Brett CT,Hillman JR (eds) Biochemistry of plant cell walls. Cambridge University Press, pp 99–124

  • —,Gubb DC, Crawford RM (1976) A new model for cellulose architecture in some plant cell walls. Protoplasma 90: 307–317

    Google Scholar 

  • Northcote DH (1985) Control of cell wall formation during growth. In:Brett CT, Hillman JR (eds) Biochemistry of plant cell walls. Cambridge University Press. Cambridge, pp 177–197

    Google Scholar 

  • — (1986) Molecular and cell biology of plant cells. J Cell Sci 4: 115–135

    Google Scholar 

  • Parameswaran N, Liese W (1981) Occurrence and structure of polylamellate walls in some lignified cells. In:Robinson DG, Quader H (eds) Cell Walls' 81. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 171–188

    Google Scholar 

  • — —, (1982) Ultrastructural localization of wall components in wood cells. Holz als Roh- und Werkstoff 40: 145–155

    Google Scholar 

  • —,Sinner M (1979) Topochemical studies on the wall of beech bark sclereids by enzymatic and acidic degradation. Protoplasma 101: 197–215

    Google Scholar 

  • Pellegrini M (1981) Application de la technique des coupes sériées ultrafines à l'étude des variations morphologiques qualitatives et quantitatives des organites cellulaires del'Euglena gracilis. Bull Soc Bot Fr 128: 43–45

    Google Scholar 

  • —,Pellegrini L (1985) On the occurrence of twisted fibrillar structures in the cytoplasm of the red algaAlsidium helminthochorton (La Tourette) Kütz. Ultrastructural and cytochemical observations. Protoplasma 126: 54–61

    Google Scholar 

  • Pluymakers HJ (1982) A helicoidal cell wall texture in root hairs ofLimnobium stoloniferum. Planta 133: 107–116

    Google Scholar 

  • Prat R (1986) Effect of staining parameters in the aspect of helicoidal cell wall structure: microcomputer simulation. In:Vian B,Reis D,Goldberg R (eds) Cell Walls' 86. Paris, pp 374–375

  • Preston RD (1979) Polysaccharide conformation and cell wall function, Ann Rev Plant Physiol 30: 55–78

    Google Scholar 

  • Quader H (1986) Cellulose microfibril orientation inOocystis solitaria: proof that microtubules control the alignment of the terminal complexes. J Cell Sci 83: 223–234

    PubMed  Google Scholar 

  • Reis D (1980–1981) Cytochimie ultrastructurale des parois en croissance par extractions ménagées. Effets comparés du dimethylsulfoxide et de la methylamine sur le démasquage de la texture. Ann Sci Nat 2–3: 121–136

    Google Scholar 

  • —,Mosiniak M, Vian B, Roland JC (1982) Cell walls and cell shape. Changes in texture correlated with an ethylene-induced swelling. Ann Sci Nat 4: 115–133

    Google Scholar 

  • -Vian B,Satiat-Jeunemaitre B,Roland JC (1986) 3-D-modelling of the basic ultratexture and alterations of the shift of cellulose in the helicoidal cell wall. In:Vian B,Reis D,Goldberg R (eds) Cell Walls' 86. Paris, pp 16–17

  • Richmond PA (1986) The relationship between microtubule organization and patterns of microfibril deposition inNitella. In:Vian B,Reis D,Goldberg R (eds) Cell Walls' 86. Paris, pp 28–29

  • Robinson DG, Kristen U (1982) Membrane flow via the Golgi apparatus of Higher Plant cells. Int Rev Cytol 77: 89–127

    Google Scholar 

  • Roland JC (1981) Comparison of arced patterns in growing and non-growing polylamellate cell walls of higher plants. In:Robinson DG, Quader H (eds) Cell Walls' 81. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 162–170

    Google Scholar 

  • —,Mosiniak M (1983) On the twisting pattern, texture and layering on the secondary cell walls of lime wood. Proposals of an unifying model. IAWA Bull 4: 15–26

    Google Scholar 

  • -Reis D (1986) Morphogenèse à un niveau supramoléculaire: l'assemblage rythmé des parois cellulaires. In press

  • —,Vian B (1979) The wall of the growing plant cell: its three-dimensional organization. Int Rev Cytol 61: 129–166

    Google Scholar 

  • — — (1981) Use of purified endopolygalacturonase for a topochemical study of elongating cell walls at the ultrastructural level. J Cell Sci 48: 333–343

    PubMed  Google Scholar 

  • —,Reis D, Mosiniak M, Vian B (1982) Cell wall texture along the growth gradient of the mung bean hypocotyl: ordered assembly and dissipative processes. J Cell Sci 56: 303–318

    Google Scholar 

  • — —,Vian B, Satiat-Jeunemaitre B (1983) Traduction du temps en espace dans les parois des cellules végétales. Ann Sci Nat 5: 173–192

    Google Scholar 

  • Ruel K, Comtat J, Barnoud F (1977) Localisation histologique et ultrastructurale des xylanes dans les parois primaires des tissus d'Arundo donax, CR Acad Sci Paris 284: 1421–1424

    Google Scholar 

  • —,Joseleau JP, Comtat J, Barnoud F (1976) Ultrastructural localization of xylans in the developing cell wall of Graminae fibers by the use of endoxylanase. Applied Polymer Symp 28: 971–981

    Google Scholar 

  • Satiat-Jeunemaitre B (1980–1981) Texture et croissance des parois des deux épidermes du coléoptile de maïs. Ann Sci Nat 2–3: 163–176

    Google Scholar 

  • — (1984a) Croissance et texture pariétales de maïs en obscurité et lumière continues. Physiol Veg 22: 745–753

    Google Scholar 

  • — (1984 b) Experimental modifications of the twisting and rhythmic pattern in the cell walls of maize coleoptile. Biol Cell 51: 373–380

    Google Scholar 

  • - (1987) Inhibition of the helicoidal assembly of the cellulose-hemicellulose complex by 2,6 dichlorobenzonitrile (DCB). Biol Cell, in press

  • Selvendran RR (1986) Developments in the chemistry and biochemistry of pectic and hemicellulosic polymers. J Cell Sci [Suppl] 2: 51–88

    Google Scholar 

  • —,Stevens BJH, O'Neil MA (1985) Developments in the isolation and analysis of cell walls from edible plants. In:Brett CT, Hillman JR (eds) Biochemistry of plant cell walls. Cambridge University Press, Cambridge, pp 39–78

    Google Scholar 

  • Srivastava LM, Sawhney VK, Bonnetemaker M (1977) Cell growth, wall deposition, and correlated fine structure of colchicine-treated lettuce hypocotyl cells. Can J Bot 55: 902–917

    Google Scholar 

  • Stevens BJ (1974) Variations du nombre de mitochondries et du volume du chondriome de la levure selon les conditions de croissance. J Microsc 20: 90 a

    Google Scholar 

  • Taiz L (1984) Plant cell expansion: regulation of cell wall mechanical properties. Ann Rev Plant Physiol 35: 585–657

    Google Scholar 

  • Takeda K, Shibaoka H (1978) Effects of gibberellin and colchicine on microfibril arrangement in epidermal cell walls ofVigna angularis Ohwi et Ohashi epicotyls. Planta 151: 393–398

    Google Scholar 

  • — — (1981 a) Changes in microfibril arrangement on the inner surface of the epidermal cell walls in the epicotyl ofVigna angularis Ohwi et Ohashi during cell growth. Planta 151: 385–392

    Google Scholar 

  • — — (1981 b) Effects of gibberellin and colchicine on microfibril arrangement in epidermal cell walls ofVigna angularis Ohwi et Ohashi epicotyls. Planta 151: 393–398

    Google Scholar 

  • Vermeulen CA, Wessels JGH (1986) Chitin biosynthesis by a fungal membrane preparation. Evidence for a transient noncrystalline state of chitin. Eur J Biochem 158: 411–415

    PubMed  Google Scholar 

  • Vian B (1982) Organized microfibril assembly in higher plant cells. In:Brown RM (ed) Cellulose and other natural polymer systems. Plenum Publishing Corporation, New York, pp 23–43

    Google Scholar 

  • —,Roland JC (1987) The helicoidal cell wall as a time register. New Phytol 105, 345–357

    Google Scholar 

  • —,Mosiniak M, Reis D, Roland JC (1982) Dissipative process and experimental retardation of the twisting in the growing plant cell wall. Effect of ethylene-generating agent and colchicine: a morphogenetic revaluation. Biol Cell 46: 301–310

    Google Scholar 

  • Wilkie KCB (1985) New perspectives on non-cellulosic cell wall polysaccharides (hemicelluloses and pectic substances) of land plants. In:Brett CT, Hillman JR (eds) Biochemistry of plant cell walls, Cambridge University Press, Cambridge, pp 1–37

    Google Scholar 

  • Wilson LG, Fry SC (1986) Extensin. A major cell wall glycoprotein. Plant Cell Environm 9: 239–260

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roland, J.C., Reis, D., Vian, B. et al. Morphogenesis of plant cell walls at the supramolecular level: Internal geometry and versatility of helicoidal expression. Protoplasma 140, 75–91 (1987). https://doi.org/10.1007/BF01273716

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01273716

Keywords

Navigation