Skip to main content
Log in

Nomenclature of Pyroxenes

Die Nomenklatur von Pyroxenen

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

This is the final report on the nomenclature of pyroxenes by the Subcommittee on Pyroxenes established by the Commission on New Minerals and Mineral Names of the International Mineralogical Association. The recommendations of the Subcommittee as put forward in this report have been formally accepted by the Commission. Accepted and widely used names have been chemically defined, by combining new and conventional methods, to agree as far as possible with the consensus of present use. Twenty names are formally accepted, among which thirteen are used to represent the end-members of definite chemical compositions. In common binary solid-solution series, species names are given to the two end-members by the “50% rule”. Adjectival modifiers for pyroxene mineral names are defined to indicate unusual amounts of chemical constituents. This report includes a list of 105 previously used pyroxene names that have been formally discarded by the Commission.

Zusammenfassung

Diese Arbeit über die Nomenklatur der Pyroxene ist der Endbericht eines Unterkomitees der Commission on New Minerals und Mineral Names der International Mineralogical Association. Die in dieser Arbeit vorgelegten Empfehlungen des Unterkomitees wurden von der Kommission angenommen. Akzeptierte und häufig verwendete Namen wurden unter Verwendung neuer und konventioneller Methoden und unter möglichst großer Übereinstimmung mit dem derzeitigen Gebrauch chemisch definiert. Zwanzig Namen wurden als bindend angenommen, von denen dreizehn Endglieder mit chemisch genau definierten Zusammensetzungen sind. Für gewöhnlich wurden die Namen von zwei Endgliedern einer binären Mischkristallreihe durch Anwendung der “50% Regel” ermittelt. Zur Darstellung ungewöhnlicher chemischer Zusammensetzungen wurden den Pyroxennamen ergänzende Eigenschaftswörter beigefügt. 105 ursprünglich verwendete Namen von Pyroxenen wurden bereits früher von der Kommission ausgesondert und sind in diesem Bericht aufgelistet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey SW (1977) Report of the IMA-IUCr joint committee on nomenclature. Am Min 62: 411–415

    Google Scholar 

  • Bokij GB, Ginzburg JV (1985) The systematics of mineral species in pyroxene family. Trans IGG Academy of Sciences, Novosibirsk 610: 12–35

    Google Scholar 

  • Cameron M, Papike JJ (1981) Structural and chemical variations in pyroxenes. Am Min 66: 1–50

    Google Scholar 

  • Chester AH (1886) Catalogue of minerals. John Wiley and Sons, New York

    Google Scholar 

  • Cosca MA, Peacor DR (1987) Chemistry and structure of esseneite (CaFe3+AlSi2O6), a new pyroxene produced by pyrometamorphism. Am Min 72: 148–156

    Google Scholar 

  • Curtis LW, Gittins J (1979) Aluminous and titaniferous clinopyroxenes from regionally metamorphosed agpaitic rocks in central Labrador. J Petrol 20: 165–186

    Google Scholar 

  • Dana ES (1892) The system of mineralogy, 6th edition. John Wiley and Sons, New York

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (1963) Rock-forming minerals. Vol 2, First ed. Singlechain silicates. Longman, Gren and Co LTD, London

    Google Scholar 

  • ——, ——, —— (1978) Rock-forming minerals, Vol 2 A, Second ed, Single-chain silicates. Longman, London and John Wiley and Sons Inc, New York

    Google Scholar 

  • De Vine JD, Sigurdsson H (1980) Garnet-fassaite calcsilicate nodule from La Soufriere, St. Vincent. Am Min 65: 302–305

    Google Scholar 

  • Dowty E, Clark JR (1973) Crystal structure refinement and optical properties of a Ti3+ fassaite from the Allende meteorite. Am Min 58: 230–240

    Google Scholar 

  • Essene EJ, Fyfe WS (1967) Omphacite in California metamorphic rocks. Contrib Mineral Petrol 15: 1–23

    Google Scholar 

  • —— (1987) Petedunnite (CaZnSi2O6), a new zinc clinopyroxene from Franklin, New Jersey, and phase equilibria for zincian pyroxenes. Am Min 72: 157–166

    Google Scholar 

  • Ford WE (1932) A textbook of mineralogy. John Wiley and Sons, Inc, New York

    Google Scholar 

  • Jaffe HW, Jaffe EB, Tracy RJ (1978) Orthoferrosilite and other iron-rich pyroxenes in microperthite gneiss of the Mount Marcy area, Adirondack Mountains. Am Min 63: 116–136

    Google Scholar 

  • Kobayashi H (1977) Kanoite, (Mn+ Mg)2[Si2O6], a new clinopyroxene in the metamorphic rock from Tatehira, Oshima Peninsula, Hokkaido, Japan. J Geol Soc Jap 83: 537–542

    Google Scholar 

  • Leake BE, Winchell H (1978) Nomenclature of amphiboles. Am Min 63: 1023–1052

    Google Scholar 

  • Mason B (1974) Aluminum-titanium-rich pyroxenes, with special reference to the Allende meteorite. Am Min 59: 1198–1202

    Google Scholar 

  • Mellini M, Merlino S, Orlandi P, Rinaldi R (1982) Cascadite and jervisite, two new scandium silicates from Baveno, Italy. Am Min 67: 599–603

    Google Scholar 

  • Morimoto N, Kitamura M (1983) Q-J diagram for classification of pyroxenes. J Jap Assoc Mineral Petrol Econ Geol 78: 141 (in Japanese)

    Google Scholar 

  • Nickel EH, Mandarino JA (1987) Procedures involving the IMA Commission on New Minerals and Mineral Names, and guidelines on mineral nomenclature. Can Min 25: 353–377

    Google Scholar 

  • Papike JJ (ed) (1969) Pyroxenes and Amphiboles: crystal chemistry and phase petrology. Mineralogical Society of America, Special Paper, No 2

  • Petersen EU, Anovitz LM, Essene EJ (1984) Donpeacorite, (Mn,Mg)MgSi2O6, a new orthopyroxene and its proposed phase relations in the system MnSiO3-MgSiO3-FeSiO3. Am Min 69: 472–480

    Google Scholar 

  • Prewitt CT (ed) (1980) Reviews in mineralogy, 7. Pyroxenes. Mineralogical Society of America, Washington, DC

    Google Scholar 

  • Robinson P (1980) The composition space of terrestrial pyroxenes-Internal and external limits. In:Prewitt CT (ed) Reviews in Mineralogy, 7. Pyroxenes. Mineralogical Society of American, Washington, DC, pp 419–494

    Google Scholar 

  • Schaller WT (1930) Adjectival ending of chemical elements used as modifiers to mineral names. Am Min 15: 566–574

    Google Scholar 

  • Strunz H (1970) Mineralogische Tabellen, 5. Auflage. Akademische Verlagsgesellschaft Geest and Portig KG, Leipzig

    Google Scholar 

  • Tracy RJ, Robinson P (1977) Zonal titanian augite in alkali olivine basalt from Tahiti and the nature of titanium substitutions in augite. Am Min 62: 634–645

    Google Scholar 

  • Tschermak G (1897) Lehrbuch der Mineralogie. Alfred Hölder, Wien

    Google Scholar 

  • Vieten K, Hamm HM (1978) Additional notes “On the calculation of the crystal chemical formula of clinopyroxenes and their contents of Fe3+ from microprobe analyses.” Neues Jahrbuch für Mineralogie, Monatshefte, pp 71–83

    Google Scholar 

  • Winchell AN, Winchell H (1951) Elements of optical mineralogy. John Wiley and Sons, Inc, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 7 figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morimoto, N. Nomenclature of Pyroxenes. Mineralogy and Petrology 39, 55–76 (1988). https://doi.org/10.1007/BF01226262

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01226262

Keywords

Navigation