Skip to main content
Log in

Ophiolite remnants at the eastern margin of the Bohemian Massif and their bearing on the tectonic evolution

Ophiolitrelikte am ostrand der Böhmischen Masse und ihre bedeutung für die tektonische entwicklung

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

Amphibolites are widespread in the eastern part of the Bohemian Massif, east of the South Bohemian Pluton. Based on their geological situation, their metamorphic evolution and their geochemistry, they were separated into three genetically different units: the Rehberg ophiolite, the Buschandlwand amphibolite and the Raabs group. The metamorphic Rehberg ophiolite consists of a ultramafic to mafic plutonic sequence overlain by a gabbro/dike complex and a volcanic section with basaltic, andesitic and rhyolitic volcanics associated with pelitic to psammitic sediments. The entire ophiolite underwent amphibolite facies metamorphism. Rock/MORB normalisation plots and other element ratio plots, such as Ti vs. V or Ta/Yb vs. Th/Yb argue for a supra-subduction zone environment as site of the origin of the Rehberg ophiolite. The Letovice ophiolite in Moravia is structured in a similar way. Geochemically it shows a more MORB like composition but also a distinct tholeiitic island arc group. Although there is no age data for the protolith of both ophiolites, it is believed that they have formed in an oceanic basin separating the Brunovistulian-Moravian block to the east and the Moldanubian block to the west. Possible traces of the continuation of the ophiolites towards the north can be found in the Stare Mesto ophiolites and the ophiolites surrounding the Sowie Gory block in the Sudetes.

Zusammenfassung

Amphibolite sind in der Böhmischen Masse, östlich des Südböhmischen Plutons weit verbreitet. Ausgehend von ihrer geologischen Position, ihrer metamorphen Entwick lung und ihrer Geochemie lassen sie sich in drei genetisch unterschiedliche Einheiten teilen: den Rehberg Ophiolith, den Buschandlwand Amphibolit und die Raabser Gruppe. Der metamorphe Rehberg Ophiolith besteht aus einer ultramatischen bis mafischen plutonischen Abfolge, die von einem Gabbro/Gangkomplex überlagert wird und einer vulkanischen Folge mit Basalten, Andesiten and Rhyoliten, die mit tonigen und sandigen Sedimenten verknüpft sind. Der gesamte Ophiolithkörper wurde unter amphibolitfaziellen Bedingungen metamorph überprägt. Rock/MORB Diagramme und andere Elementdarstellungen, wie z.B. das Ti vs. V, oder das Ta/Yb vs. Th/Yb Diagramm sprechen für eine Entstehung des Rehberg Ophioliths in einer Suprasubduction Zone. Der Letovice Ophiolith in Mähren weist eine ähnliche Struktur auf. Geochemisch zeigt er stärkere Ähnlichkeiten mit MORB, enthält aber auch Elemente von tholeiitischen Inselbogenbasalten. Auch wenn es für beide Ophiolithe noch keine Protolith-Altersdaten gibt, scheint es dennoch wahrscheinlich, daß sie in einem Ozeanbecken, das den Brunovistulisch-Moravischen Kontinentalblock im Osten vom Moldanubischen Kontinent im Westen trennt, gebildet wurden. Die mögliche Fortsetzung beider Ophiolithe könnten im Norden der Stare Mesto Ophiolith und die Ophiolithe rund um den Sowie Gory Block in den Sudeten darstellen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alabaster T, Pearce JA, Malgas J (1982) The volcanic stratigraphy and petrogenesis of the Oman ophiolite complex. Contrib Mineral Petrol 81: 168–183

    Google Scholar 

  • Beccaluva L, Ohnenstetter D, Ohnenstetter M (1979) Geochemical discrimination between ocean-floor and island-arc tholeiites - application to some ophiolites. Can J Earth Sci 16: 1874–1882

    Google Scholar 

  • Bowes DR, Hopgood AM, Tonika J (1992) Structural succession and tectonic history Czechoslowakia. Proceedings, 1st International Conference on the Bohemian Massif, Prague 1988, pp 36–43

  • Coleman RG (1977) Ophiolites. In:Wyllie PJ (ed) Minerals and rocks. Springer, Berlin Heidelberg New York, 129p

    Google Scholar 

  • Dallmeyer RD, Fritz H, Neubauer F, Urban M (1994)40Ar/39Ar mineral age controls on the tectonic evolution of the southeastern Bohemian Massif. Exc Guide: Geology of the Moravian Zone, Final Conf. S 47-GEO, Pre-Alpine Crust in Austria, pp 14–22

  • Dudek A (1980) The crystalline basement block of the Outer Carpathians in Moravia, Bruno-Vistulicum. Rozpr Cesk Akad Ved Rada Mat Prir Ved 90(8): 85p

    Google Scholar 

  • Finger F, Steyrer HP (1995) A tectonic model for the Eastern Variscides: indications from a chemical study of amphibolites in the South-Eastern Bohemian Massif. Geol Carp 46/3: 137–150 (Bratislava)

    Google Scholar 

  • Fritz H (1994) The Raabs Serie, a Variscan ophiolite in the SE-Bohemian Massif: a key for the tectonic interpretation. Czech Geol Soc 39/1: 32–33

    Google Scholar 

  • Fritz H (1996) Geodynamic and tectonic evolution of the southeastern Bohemian Massif: the Thaya section (Austria). Mineral Petrol 58: 253–258

    Google Scholar 

  • Fritz H, Neubauer F (1993) Kinematics of crustal stacking and dispersion in the south eastern Bohemian Massif. Geol Rdsch 82: 556–565

    Google Scholar 

  • Fuchs G (1976) Zur Entwicklung der Böhmischen Masse. Jb Geol B-A 119: 45–61

    Google Scholar 

  • Fuchs G, Matura A (1976) Zur Geologie des Kristallins der südlichen Böhmischen Masse. Jb Geol B-A 119: 1–43

    Google Scholar 

  • Höck V (1995) Metamorphic evolution. In:Dallmeyer RD et al (eds) Pre-Permian geology of Central and Eastern Europe. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Höck V, Petrakakis K, Richter W (1997) Metamorphic evolution of the Southeastern Bohemian Massif (in preparation)

  • Hodges KV, Spear FS (1982) Geothermometry, geobarometry and the Al2SiO5 triple point at Mt. Moosilauke, New Hampshire. Am Mineral 67: 1118–1134

    Google Scholar 

  • Hodges KV, Crowley PD (1985) Error estimation and empirical geothermobarometry for pelitic systems. Am Mineral 70: 702–709

    Google Scholar 

  • Hoisch TD (1990) Empirical calibration of six geobarometers for the mineral assemblage quartz + muscovite + biotite + plagioclase + garnet. Contrib Mineral Petrol 104: 225–234

    Google Scholar 

  • Holland T, Blundy J (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib Mineral Petrol 116: 433–447

    Google Scholar 

  • Jelinek E, Pacesova M, Misar Z, Martinee P, Weiss Z (1984) Geochemistry of a dismembered metaophiolite complex, Letovice, Czechoslovakia. Trans R Soc Edinburgh Earth Sci 75: 37–48

    Google Scholar 

  • Kastl E, Tonika J (1984) The Marianske Lazne metaophiolite complex (West Bohemia). Krystalinikum 17: 59–76

    Google Scholar 

  • Lettner H (1988) NAAHPGE-Computerprogramm zur Verrechnung von Gammaspektrometriedaten für die Neutronenaktivierungsanalyse. PC-Programm Inst Geowiss Univ Salzburg (unpublished)

  • Macintyre RM Bowes DR, Hamidullah S, Onstott TC (1992) K-Ar and Ar-Ar isotopic study on amphiboles from meta-ophiolite complexes, Eastern Bohemian Massif. Proceedings, Ist International Conference Bohemian Massif, Prague 1988, pp 195–199

  • Marchet A (1919) Der Gabbro-Amphibolitzug von Rehberg im niederösterreichischen Waldviertel. Sitzber Akad Wiss Wien math natw KI, Abt I, 128: S215–291

    Google Scholar 

  • Matte P, Maluski H, Echtler H (1985) Cisaillements ductiles varisques vers l'Est - Sud-Est dans les nappes du Waldviertel (Sud-Est du Massif de Boheme, Autriche). Données microtectortiques et radiometric39Ar/40Ar. CR Acad Sci Paris, 301 Serie II No 10: 721–726

    Google Scholar 

  • Matura A (1976) Hypothesen zum Bau und zur geologischen Geschichte des kristallinen Grundgebirges von Südwestmähren und dem niederösterreichischen Waldviertel. Jb Geol B A 119: 63–74

    Google Scholar 

  • Misar Z, Jelinek E, Pacesova M (1984) The Letovice dismembered metaophiolites in the framework of the Saxo-Thuringian zone of the Bohemian Massif. Miner slovaca 16, 1: 13–28

    Google Scholar 

  • Montag O, Höck V (1993) Geochemische Einsichten in moldanubische Amphibolite. Mitt österr Min Ges 138: 131–142

    Google Scholar 

  • Moores EM (1982) Origin and emplacement of ophiolites. Rev Geoph Spa Phys 20: 735–760

    Google Scholar 

  • Pearce JA (1982) Trace element characteristics of lavas from destructive plate boundaries. In:Thorpe RS (ed) Orogenic andesites. John Wiley and Sons, New York, pp 525–548

    Google Scholar 

  • Pearce JA (1983) Role of sub-continental lithosphere in magma genesis at active continental margins. In:Hawkesworth CJ, Norry MJ (eds) Continental basalts and mantle xenoliths. Shiva Geology Series, Nantwich, pp 230–272

    Google Scholar 

  • Pearce JA, Cann JR (1973) Tectonic setting of basic volcanic rocks determined using trace element analysis. Earth Planet Sci Lett 19: S290–300

    Google Scholar 

  • Pearce JA, Norry MJ (1979) Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contrib Mineral Petrol 69: S33–47

    Google Scholar 

  • Pearce JA, Alabaster T, Shelton AW, Searle MP (1981) The Oman ophiolite as an cretaceous arc-basin complex: evidence and implications. Phil Trans R Soc Lond A300: 299–317

    Google Scholar 

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25: 956–983

    Google Scholar 

  • Petrakakis K (1991) Metamorphosebedingungen in der Gföhler Einheit. Osterr Beitr Met Geophys 3: 137–148

    Google Scholar 

  • Pin C (1990) Variscan oceans: ages, origins and geodynamic implications inferred from geochemical and radiometric data. Tectonophysics 177: 215–227

    Google Scholar 

  • Pin C, Majerovicz A, Wojciechowska I (1988) Upper Paleozoic oceanic crust in the Polish Sudetes: Nd-Sr isotope and trace element evidence. Lithos 21: 195–209

    Google Scholar 

  • Poubova E (1984) Amphibolites of the Letovice crystalline complex and their genetic interpretation. Krystalinikum 17: 115–127

    Google Scholar 

  • Poubova E, Sokol A (1992) The petrology and geochemistry of the metaophiolitec rocks of Stare Mesto crystalline unit. Krystalinikum 21: 67–88

    Google Scholar 

  • Pressel Ch (1997) The metamorphism and tectonic history of the three lithotectonic units from the Moldanubian Zone of the Bohemian Massif in Lower Austria (in preparation)

  • Shervais JW (1982) Ti-V plots and the petrogenesis of modern and ophiolitec lavas. Earth Planet Sci Lett 59: 101–118

    Google Scholar 

  • Steyrer HP, Finger F (1994) Metamorphic rift basalts and dismembered ophiolites of an Early Paleozoic ocean in the Southern Bohemian Massif. J Czech Geol Soc 39/1: 108–109

    Google Scholar 

  • Stipska P, Schulmann K (1995) Inverted metamorphic zonation in the basement-derived nappe sequence, eastern margin of the Bohemian Massif. Geol J 30: 385–413

    Google Scholar 

  • Suess FE (1903) Bau and Bild der Böhmischen Masse. In:Diener C (ed) Bau and Bild Osterreichs. Tempsky-Freytag, Wien, 322pp

    Google Scholar 

  • Sun S (1982) Chemical composition and origin of the Earth's primitive mantle. Geochim Cosmochim Acta 46: 179–192

    Google Scholar 

  • Sun S, Mcdonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implication for mantle composition and process.

  • Tollmann A (1982) Großräumiger variszischer Deckenbau im Moldanubikum und neue Gedanken zum Variszikum Europas. Geotekt Forsch 64: 91 S

  • Wood DA (1980) The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth Planet Sci Lett 50: 11–30

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 7 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Höck, V., Montag, O. & Leichmann, J. Ophiolite remnants at the eastern margin of the Bohemian Massif and their bearing on the tectonic evolution. Mineralogy and Petrology 60, 267–287 (1997). https://doi.org/10.1007/BF01173712

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01173712

Keywords

Navigation