Skip to main content
Log in

Rare earth element fractionation in metamorphogenic hydrothermal calcite, magnesite and siderite

Fraktionierung der seltenen Erd-Elemente in metamorphogenen hydrothermoclen Calciten, Magnesiten und Sideriten

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

Normalized REE patterns of aqueous solutions and their precipitates bear information on the physico-chemical environments a fluid experienced during REE mobilization, fluid migration and minerogenesis. Positive Eu and Yb anomalies indicate REE mobilization by a F-, OH- and CO3 2−-poor fluid in a high-temperature regime, but are only retained by a precipitating mineral if precipitation occurs in a low-temperature environment. Negative Ce anomalies are typical of oxidizing conditions and are unlikely to develop during siderite precipitation. LREE/HREE fractionation is controlled by fluid composition and “mineralogical control”. REE patterns of Ca minerals allow to class the reacting fluids in “normal” (Ca/ligand ≫ 1) and “ligand-enriched” (Ca/ligand ≈ 1), the latter being characteristic for remobilization processes.

The Radenthein magnesite and Hüttenberg siderite deposits, both Carinthia, Austria, are discussed and shown to be of non-sedimentary, non-metamorphic, but metamorphogenic metasomatic origin.

Zusammenfassung

Normierte Lanthaniden-Verteilungsmuster wässeriger Lösungen und deren Präzipitate enthalten Informationen über die verschiedenen physiko-chemischen Bedingungen, denen die Fluidphase während der Mobilisierung der Lanthaniden, der Migration und der Minerogenese ausgesetzt war. Positive Eu- und Yb-Anomalien weisen auf eine Mobilisierung der Lanthaniden bei erhöhten Temperaturen durch eine F-, OH-und CO3 2−-arme Lösung. Die positiven Anomalien der Lösung werden jedoch nur dann auf ein Mineral übertragen, wenn dessen Präzipitation in einem niedrigen Temperaturbereich erfolgt. Negative Ce-Anomalien sind Indikatoren oxischer Bedingungen, weshalb ihre Entwicklung im Verlauf einer Siderit-Präzipitation weitgehend ausgeschlossen werden kann. Die Fraktionierung von leichten und schweren Lanthaniden wird von der chemischen Zusammensetzung der Fluidphase und der “mineralogischen Kontrolle” bestimmt. Die Lanthaniden-Verteilungsmuster von Ca-Mineralen erlauben es, deren Mutter-Lösungen in “normal” (Ca/Liganil ≫1) und “Liganden-reich” (Ca/Liganil ≈ 1) zu untergliedern, wobei letztere für Remobilisierungsprozesse typisch sind.

Verschiedene minerogenetische Modelle für Spatmagnesite aus der Lagerstätte Radenthein und Siderite aus der Lagerstätte Hüttenberg, beide Kärnten, Österreich, werden vor dem Hintergrund deren Lanthaniden-Verteilung diskutiert. Es wird gezeigt, daß sowohl für die Radenthein-Magnesite als auch für die Hüttenberg-Siderite nur ein nicht-sedimentäres, nicht-metamorphes, wohl aber metamorphogen-metasomatisches minerogenetisches Modell mit der Lanthaniden-Verteilung kompatibel ist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appel PWU (1987) Geochemistry of the Early Archaean Isua Iron-Formation, West Greenland. In:Appel PWU, LaBerge GL (eds) Precambrian Iron-Formations. Theophrastus Publications, Athens, pp 31–67

    Google Scholar 

  • Bau M (in press) REE mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chem Geol 93Bilal AL (in press) Thermodynamic study of Eu3+/Eu2+ redox reaction in aqueous solutions at elevated temperatures and pressures by means of cyclic voltammetry. Lanthan Actin Res

  • — (subm) Note on the aqueous geochemistry of the rare-earth elements: Comments on “The aqueous geochemistry of the rare-earth elements and yttrium. 2. Theoretical predictions of speciation in hydrothermal solutions to 350°C at saturation water vapor pressure” bySA Wood. Chem Geol

  • Campbell AC, Palmer MR, Klinkhammer GP, Bowers TS, Edmond JM, Lawrence JR, Casey JF, Thompson G, Humphries S, Rona P, Karson JA (1988) Chemistry of hot springs on the Mid-Atlantic Ridge. Nature 335: 514–519

    Google Scholar 

  • Clar E, Meixner H (1953) Die Eisenspatlagerstätte von Hüttenberg und ihre Umgebung. Carinthia II 143/63: 67–92

    Google Scholar 

  • ——,Meixner H (1981) Die grundlegenden Beobachtungen zur Entstehung der Eisenspatlagerstätten von Hüttenberg. Carinthia II 171/91: 55–92

    Google Scholar 

  • Dieber K (1981) Geologischer Überblick über die Eisenspatlagerstätte Hüttenberg. In: “2500 Jahre Eisen aus Hüttenberg”, Kärntner Museumsschriften 68: 24-34

  • Doerner HA, Hoskins WM (1925) Co-precipitation of radium and Ba sulfates. Am Chem Soc 47: 662–675

    Google Scholar 

  • Dulski P, Morteani G (1989) Magnesite formation by CO2 metasomatism during regional metamorphism of the ultrabasic rocks of the Ochsner serpentinite (Zillertaler Alpen, Tyrol, Austria). In:Möller P (ed) Magnesite: Geology, mineralogy, geochemistry, formation of Mg-carbonates. Monogr Ser Min Dep N° 28. Borntrager, Berlin, pp 95–104

    Google Scholar 

  • Elderfield H, Sholkovitz ER (1987) Rare earth elements in the pore waters of reducing nearshore sediments. Earth Planet Sci Lett 82: 280–288

    Google Scholar 

  • —— (1990) The rare earth elements in rivers, estuaries and coastal seas and their significance to the composition of ocean waters. Geochim Cosmochim Acta 54: 971–991

    Google Scholar 

  • Evensen NM, Hamilton PJ, O'Nions RK (1978) Rare-earth abundances in chondritic meteorites. Geochim Cosmochim Acta 42: 1199–1212

    Google Scholar 

  • Exner Ch (1980) Das Kristallin östlich der Katschbergzone. Mitt österr geol Ges 71/72: 167–189

    Google Scholar 

  • Frimmel H (1988) Strontium isotopic evidence for the origin of siderite, ankerite and magnesite mineralizations in the Eastern Alps. Mineral Deposita 23: 268–275

    Google Scholar 

  • —— (1991) Strontium isotopes in magnesites from Permian and Triassic strata, Eastern Alps. App Geochem 6: 89–96

    Google Scholar 

  • Fuchs HW (1980) Korngefügeanalytische Untersuchungen der Siderit-Lagerstätte Hüttenberg (Kärnten). Tscherm Min Petrol Mitt 27: 233–260

    Google Scholar 

  • Hu X, Wang YL, Schmitt RA (1988) Geochemistry of sediments on the Rio Grande Rise and the redox evolution of the South Atlantic Ocean. Geochim Cosmochim Acta 52: 201–208

    Google Scholar 

  • Matsui M (1966) The coprecipitation behaviour of rare earth elements with calcium oxalate upon precipitation from homogeneous systems. Bull Chem Soc Japan 39: 1114–1119

    Google Scholar 

  • McLennan SR (1989) Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. In:Lipin BR, McKay GA (eds) Geochemistry and mineralogy of rare earth elements. Reviews in Mineralogy, vol 21. Min Soc Amer Washington, pp 169-200

  • Michard A, Albarede F, Michard G, Minster JF, Charlou JL (1983) Rare-earth elements and uranium in high-temperature solutions from the East Pacific Rise hydrothermal vent field (13°N). Nature 303: 795–797

    Google Scholar 

  • —— (1986) The REE content of some hydrothermal fluids. Chem Geol 55: 51–60

    Google Scholar 

  • Möller P (1983) Lanthanoids as a geochemical probe and problems in lanthanoid geochemistry-Distribution and behavior of lanthanoids in non-magmatic-phases. In:Sinha SP (ed) Systematics and the properties of the lanthanides. NATO ASI series. Series C, Mathematical and physical sciences, no. 109: 561-616

  • —— (1989) Minor and trace elements in magnesite. In:Möller P (ed) Magnesite: Geology, mineralogy, geochemistry, formation of Mg-carbonates. Monogr Ser Min Dept N° 28. Bornträger, Berlin, pp 173–195

    Google Scholar 

  • —— (1982) Die Entwicklung von Flu ßspatmineralisationen im Bereich des Schwarzwaldes. Jh geol Landesamt Baden-Württemberg 24: 35–70

    Google Scholar 

  • —— (1984) The origin of the calcites from Pb-Zn veins in the Harz Mountains, Federal Republic of Germany. Chem Geol 45: 91–112

    Google Scholar 

  • —— (1991) Element partitioning in calcite as a function of solution flow rate: a study on vein calcites from the Harz Mountains. Mineral Deposita 26: 175–179

    Google Scholar 

  • Morgan JW, Wandless GA (1980) Rare earth elements in some hydrothermal minerals: evidence for crystallographic control. Geochim Cosmochim Acta 44: 973–980

    Google Scholar 

  • Morteani G, Neugebauer H (1990) Chemical and tectonic controls on the formation of sparry magnesite deposits-the deposits of the northern Greywacke zone (Austria). Geol Rundsch 79/2: 337–344

    Google Scholar 

  • Nance WB, Taylor SR (1976) Rare earth element patterns and crustal evolution-1. Australian post-Archean sedimentary rocks. Geochim Cosmochim Acta 40: 1539–1551

    Google Scholar 

  • Olivarez AM, Owen RM (1989) REE/Fe variations in hydrothermal sediments: Implications for the REE content of seawater. Geochim Cosmochim Acta 53: 757–762

    Google Scholar 

  • Pistotnik J (1974) Zur Geologie des NW-Randes der Gurktaler Masse (Stangalm-Mesozoikum, Osterreich). Mitt geol Ges 66/67: 127–141

    Google Scholar 

  • Robie RA, Hemingway BS, Fisher JR (1978) Thermodynamic properties of minerals and related substances at 290.15 K and one bar (10s pascals) pressure and at higher temperatures. US Geol Surv Bull 1452/456

  • Schimana R (1986) Neue Ergebnisse zur Entwicklungsgeschichte des Kristallins um Radenthein (Kärnten, Österreich). Mitt Ges geol Bergbaustud Österr 33: 221–232

    Google Scholar 

  • Schroll E, Papesch W, Dolezel P (1986) Beitrag der C- und O-Isotopenanalyse zur Genese ostalpiner Sideritvorkommen. Mitt Öst Geol Ges 78: 181–191

    Google Scholar 

  • Schulz O, Schroll E, Dieber K, Fuchs H (1986) Zur Frage der Sideritgenese der Lagerstätten um Hüttenberg in Kärnten. Carinthia II 176/96: 479–512

    Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32: 751–767

    Google Scholar 

  • Shock EL, Helgeson HC (1988) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Correlation algorithms for ionic species and equation of state predictions to 5 Kb and 1000°C. Geochim Cosmochim Acta 52: 2009–2036

    Google Scholar 

  • ——, ——Sverjensky DA (1989) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Standard partial molal properties of inorganic neutral species. Geochim Cosmochim Acta 53: 2157–2183

    Google Scholar 

  • Sholkovitz ER (1990) Rare-earth elements in marine sediments and geochemical standards. Chem Geol 88: 333–347

    Google Scholar 

  • Sholkovitz ER, Piepgras DJ, Jacobsen SB (1989) The pore water chemistry of rare earth elements in Buzzard Bay sediments. Geochim Cosmochim Acta 53: 2847–2856

    Google Scholar 

  • Sverjensky DA (1984) Europium redox equilibria in aqueous solution. Earth Planet Sci Letters 67: 70–78

    Google Scholar 

  • Tanger JC, Helgeson HC (1988) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Revised equations of state for the standard partial molal properties of ions and electrolytes. Am J Sci 288: 19–98

    Google Scholar 

  • Tufar W (1979) Ostalpine Lagerstätten. Exkursionsfuhrer Dt Geol Ges B3: 1–127

    Google Scholar 

  • —— (1989) Formation of magnesite in the Radenthein (Carinthia/Austria) type locality. In:Möller P (ed) Magnesite: Geology, mineralogy, geochemistry, formation of Mg-carbonates. Monogr Ser Min Dept N° 28. Bornträger, Berlin, pp 35–171

    Google Scholar 

  • Wood SA (1990) The aqueous geochemistry of the rare-earth elements and yttrium. 2. Theoretical predictions of speciation in hydrothermal solutions to 350°C at saturation water vapor pressure. Chem Geol 88: 99–125

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bau, M., Möller, P. Rare earth element fractionation in metamorphogenic hydrothermal calcite, magnesite and siderite. Mineralogy and Petrology 45, 231–246 (1992). https://doi.org/10.1007/BF01163114

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01163114

Keywords

Navigation