Skip to main content
Log in

Chemical differences between minerals from mineralizing and barren intrusions associated with molybdenum mineralization at Climax, Colorado

Chemische Charakteristika von Mineralen aus erzführenden und erzfreien Intrusionen im Bereich der Molybdänlagerstätte Climax, Colorado

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

At Climax, comagmatic igneous intrusions can be subdivided into two groups, mineralizing stocks which are parent intrusions for Mo orebodies and barren stocks. Magmatic biotites in mineralizing stocks are similar to hydrothermal biotites in that they contain a greater proportion of Si-enriched and Ti-depleted compositional domains than do magmatic biotites in barren stocks. A similar trend of Si-enrichment correlated with Ti-depletion is also recorded in biotites from the Bingham porphyry copper deposit. Such trends are attributed to vapour exsolution associated with mineralization. Mo concentrations of magmatic biotites, as determined by ion-probe analysis, from mineralizing stocks (av. 40 gg/g) and barren stocks (av. 33 μ/g) at Climax are similar, being in the same order of magnitude as magmatic biotite Cu concentrations in mineralizing and barren (type A) intrusions in North American porphyry copper deposits (Hendry et al., 1985). These Cu and Mo values are more than a factor of 10 lower than Cu concentrations commonly recorded in magmatic mafic phases in barren (type B) South West Pacific and Australian granitic systems that are temporally distinct from mineralizing events, and are consistent with the magmatic-hydrothermal origin for the Climax deposits proposed by White et al. (1981).

Zusammenfassung

Zwei Gruppen komagmatischer Intrusivkörper können im Bereich der Molybdän-Lagerstätte Climax, Colorado, unterschieden werden: Mineralisierende Intrusiva, die Stammagmen für Molybdän-Erzkörper darstellen, und erzfreie Intrusiva. Magmatische Biotite in mineralisierenden Intrusiva sind hydrothermalen Biotiten insofern ähnlich, als sie einen größeren Anteil von Si-angereicherten und Ti-verarmten Bereichen enthalten als magmatische Biotite in erzfreien Intrusiva. Ein ähnlicher Trend von Si-Anreicherung, die mit Ti-Verarmung korreliert werden kann, ist auch in Biotiten aus der Porphyry-copper-Lagerstätte Bingham bekannt geworden. Derartige Trends werden auf Entmischung von Dampfphasen in Zusammenhang mit der Mineralisation zurückgeführt.

Molybdän-Konzentrationen von magmatischen Biotiten in Climax wurden mit der Ionensonde bestimmt und zeigen in mineralisierenden und erzfreien Intrusiva ähnliche Werte, i.e., 40 p/g bzw. 33 gg/g. Diese Werte liegen in derselben Größenordnung wie Kupferkonzentrationen in magmatischen Biotiten aus vererzten und erzfreien (Typ A) Intrusionen im nordamerikanischen Porphyry-copper-Lagerstätten (Hendry et al., 1985). Diese Kupfer- und Molybdänwerte sind um den Faktor 10 niedriger als Kupferkonzentrationen, die man gewöhnlich in magmatischen mafischen Phasen in erzfreien (Typ B) Granitsystemen im südwestlichen Pazifik und Australien nachgewiesen hat. Diese sind zeitlich einer anderen Entstehungsperiode zuzuordnen als die erzbildenden Vorgänge, und dies stimmt wiederum mit der magmatisch hydrothermalen Entstehung der Lagerstätten von Climax überein, wie sie vonWhite et al. (1981) vorgeschlagen worden ist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arima M, Edgar AD (1981) Substitution mechanisms and solubility of titanium in phlogopites from rocks of probable mantle origin. Contrib Mineral Petrol 77: 288–295

    Google Scholar 

  • Bowman JR, Parry WT, Kropp WP, Kruer SA (1987) Chemical and isotopic evolution of hydrothermal solutions at Bingham, Utah. Econ Geol 82: 395–428

    Google Scholar 

  • Candela PA, Holland HD (1984) The partitioning of copper and molybdenum between silicate melts and aqueous fluids. Geochim Cosmochim Acta 48: 373–380

    Google Scholar 

  • —— (1986) Amass transfer model for copper and molybdenum in magmatic hydrothermal systems: The origin of Porphyry-Type Ore Deposits. Econ Geol 81: 1–19

    Google Scholar 

  • Chivas AR (1976) Magmatic evolution and porphyry copper mineralization of the Koloula Igneous Complex, Guadalcanal. Int Geol Cong 25th, Sydney, 1: 48

    Google Scholar 

  • —— (1981) Geochemical evidence for magmatic fluids in porphyry copper mineralization. Part 1. Mafic silicates from the Koloula Igneous Complex. Contrib Mineral Petrol 78: 389–403

    Google Scholar 

  • Creasey SC (1980) Chronology of intrusion and deposition of porphyry copper ores, GlobeMiami District, Arizona. Econ Geol 75: 830–844

    Google Scholar 

  • Czamanske JK, Wones DR (1973) Oxidation during magmatic differentiation, Finnmarka Complex, Oslo area, Norway. Part 2. The mafic silicates. J Petrol 14: 349–380

    Google Scholar 

  • Gunow AJ, Ludington S, Munoz JL (1980) Fluorine in micas from the Henderson deposit, Colorado. Econ Geol 75: 1127–1137

    Google Scholar 

  • Hendry DAF, Chivas, AR, Reed SJB, Long JVP (1981) Geochemical evidence for magmatic fluids in porphyry copper mineralization. 11. Ion-probe analysis of Cu contents of mafic minerals, Koloula Igneous Complex.Contrib Mineral Petrol 78: 404–412

    Google Scholar 

  • ——, ——Long, JVP, Reed SJB (1985) Chemical differences between minerals from mineralizing and barren intrusions from some North American porphyry copper deposits. Contrib Mineral Petrol 89: 317–329

    Google Scholar 

  • Jacobs DC, Parry WT (1979) Geochemistry of biotite in the Santa Rita porphyry copper deposit, New Mexico. Econ Geol 74: 860–887

    Google Scholar 

  • Lanier G, Raab WI, Folsom RB, Cone S (1978) Alteration of equigranular monzonite, Bingham Mining District, Utah. Econ Geol 73: 1270–1286

    Google Scholar 

  • Le Bel L (1979) Micas magmatiques et hydrothermaux dans l'environnement du porphyre cuprifére de Cerro Verde-Santa Rosa, Pérou. Bull Minéral 102: 35–41

    Google Scholar 

  • Mason DR (1978) Compositional variations in ferromagnesian minerals from porphyry copper-generating and barren intrusions of the Western Highlands, Papua New Guinea. Econ Geol 73: 878–890

    Google Scholar 

  • Reed SJB (1975) Electron microprobe analysis. Cambridge Univ Press, London, pp 400

    Google Scholar 

  • —— (1980) Trace element analysis with the ion-probe. Scanning 3: 119–127

    Google Scholar 

  • Stein HJ, Hanna JL (1985) Movement and origin of ore fluids in Climax-type systems. Geology 13: 469–474

    Google Scholar 

  • Wallace SR, Baker RC, Jonson DC, Mackenzie WB (1960) Geology of the Climax molybdenum deposits, a progress report. In:Weimer RJ, Haun JD (eds) Guide to the geology of Colorado. Rocky Mountain Assoc Geologists, Denver, pp 238–252

    Google Scholar 

  • ——,Muncaster NK, Jonson DC, Mackenzie WB, Bookstrom AA, Surface VE (1968) Multiple intrusion and mineralization at Climax, Colorado. In:Ridge JD (ed) Ore deposits of the United States, 1933–1967. Vol. 1. Am Inst Mining Metall Petroleum Engineers, New York, pp 605–640

    Google Scholar 

  • White WH, Bookstrom AA, Kamilli RJ, Ganster MW, Smith RP, Ranta DE, Steininger RC (1981) Character and origin of Climax-type molybdenum deposits. In:Skinner BJ (ed) Economic Geology 75th Anniversary Volume. Economic Geology Publishing Company, El Paso, pp 270–316

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 4 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hendry, D.A.F., Gunow, A.J., Smith, R.P. et al. Chemical differences between minerals from mineralizing and barren intrusions associated with molybdenum mineralization at Climax, Colorado. Mineralogy and Petrology 39, 251–263 (1988). https://doi.org/10.1007/BF01163039

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01163039

Keywords

Navigation