Skip to main content
Log in

A model for science kinematics

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

A comprehensive model for describing various forms of developments in science is defined in precise, set-theoretic terms, and in the spirit of the structuralist approach in the philosophy of science. The model emends previous accounts in centering on single systems in a homogenous way, eliminating notions which essentially refer to sets of systems. This is achieved by eliminating the distinction between theoretical and non-theoretical terms as a primitive, and by introducing the notion of intended links. The force of the model is demonstrated by formally incorporating many of the important, precise meta-theoretic concepts occurring in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Balzer,Empirische Geometrie und Raum-Zeit-Theorie in mengentheoretischer Darstellung Kronberg/Ts.: Scriptor, 1978.

    Google Scholar 

  2. W. Balzer,Empirical Claims in Exchange Economics, in: W. Stegmüller et al. (eds.),Philosophy of Economics, Berlin etc.: Springer, 1982, 16–40.

    Google Scholar 

  3. W. Balzer,Theorie und Messung Berlin etc.: Springer 1985.

    Google Scholar 

  4. W. Balzer,The Structuralist View of Measurement: An Extension of Received Measurement Theories in: C. Wade Savage and P. Ehrlich,Philosophical and Foundational Issues in Measurement Theory Hillsdale: Lawrence Erlbaum, 1992, 93–117.

    Google Scholar 

  5. W. Balzer, B. Lauth, G. Zoubek,A Static Theory of Reference in Science Synthese 79 (1989), 319–60.

    Google Scholar 

  6. W. Balzer, C.U. Moulines, J.D. Sneed,An Architectonic for Science Dordrecht: Reidel, 1987.

    Google Scholar 

  7. W. Balzer andJ.D. Sneed,Generalized Net Structures of Empirical Theories Studia Logica 36 (1977), 195–210,Studia Logica 37 (1978), 167–94.

    Google Scholar 

  8. L. Blum andM. Blum,Toward a Mathematical Theory of Introductive Inference Information and Control 28 (1975), 125–55.

    Google Scholar 

  9. N. Bourbaki,Toplogie Générale Hermann: Paris 1951.

    Google Scholar 

  10. N. Bourbaki,Elements of Mathematics: Theory of Sets Reading, Mass.: Addison-Wesley 1968.

    Google Scholar 

  11. W. Diederich,Strukturalistische Rekonstruktionen,Braunschweig-Wiesbaden:Vieweg 1981.

    Google Scholar 

  12. H. Gaifman, D.N. Osherson, S. Weinstein,A Reason for Theoretical Terms Erkenntnis 32 (1990), 149–59.

    Google Scholar 

  13. E.M. Gold,Language Identification in the Limit Information and Control 10 (1967), 447–74.

    Google Scholar 

  14. W.S. Hatcher,Foundations of Mathematics Philadelphia etc.: Saunders 1968.

    Google Scholar 

  15. K.T. Kelly andC. Glymour,Convergence to the Truth and Nothing but the Truth Philosophy of Science 56 (1989), 185–220.

    Google Scholar 

  16. L. Laudan,Progress and its Problems Berkeley etc.: UP 1977.

    Google Scholar 

  17. B. Lauth,Reference Problems in Stoichiometry Erkenntnis 30 (1989), 339–62.

    Google Scholar 

  18. B. Lauth,Theory Evolution and Reference Kinematics Synthese 88 (1991), 279–307.

    Google Scholar 

  19. B. Lauth andG. Zoubek, Zur Rekonstruktion des Bohrschen Forschungsprogramms I and IIErkenntnis 37 (1992), 223–247 and 249–273.

    Google Scholar 

  20. G. Ludwig,Die Grundstrukturen einer physikalischen Theorie 2nd ed., Berlin etc.: Springer 1990.

    Google Scholar 

  21. D. Mayr,Investigations of the Concept of Reduction II Erkenntnis 16 (1981), 109–29.

    Google Scholar 

  22. C.U. Moulines,Intertheoretic Approximation: the Kepler-Newton Case Synthese 45 (1980), 387–412.

    Google Scholar 

  23. D.N. Osherson, M. Stob andS. Weinstein,Systems that Learn Cambridge/Mass.: MIT Press 1986.

    Google Scholar 

  24. D.N. Osherson andS. Weinstein,Identification in the Limit of First Order Structures Journal of Philosophical Logic 15 (1986), 55–81.

    Google Scholar 

  25. E. Scheibe, Die Erklaerung der Keplerschen Gesetze durch Newtons Gravitationsgesetz in E. Scheibe and G. Suessmann (eds.),Einheit und Vielheit Goettingen: Vandenhoeck & Ruprecht 1973, 98–118.

    Google Scholar 

  26. S. Shapiro,Second-Order Languages and Mathematical Practice The Journal of Symbolic Logic 50 (1985), 714–42.

    Google Scholar 

  27. J.D. Sneed,The Logical Structure of Mathematical Physics (1971) Dordrecht: Reidel, 2nd ed., 1979.

    Google Scholar 

  28. W. Stegmüller,Theorie and Erfahrung Dritter Teilband, Berlin etc.: Springer 1986.

    Google Scholar 

  29. B.C. van Fraassen,On the Extension of Beth's Semantics of Physical Theories Philosophy of Science 37 (1970), 325–39.

    Google Scholar 

  30. H. Zandvoort,Comments on the Notion ‘Empirical Claim of a Specialization Theory Net’ within the Structuralist Conception of Theories Erkenntnis 18 (1982), 25–38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper was written under DFG project Ba 678/3-2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balzer, W., Lauth, B. & Zoubek, G. A model for science kinematics. Stud Logica 52, 519–548 (1993). https://doi.org/10.1007/BF01053258

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01053258

Keywords

Navigation