Skip to main content
Log in

Singular perturbation theory for homoclinic orbits in a class of near-integrable Hamiltonian systems

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

This paper describes a new type of orbits homoclinic to resonance bands in a class of near-integrable Hamiltonian systems. It presents a constructive method for establishing whether small conservative perturbations of a family of heteroclinic orbits that connect pairs of points on a circle of equilibria will yield transverse homoclinic connections between periodic orbits in the resonance band resulting from the perturbation. In any given example, this method may be used to prove the existence of such transverse homoclinic orbits, as well as to determine their precise shape, their asymptotic behavior, and their possible bifurcations. The method is a combination of the Melnikov method and geometric singular perturbation theory for ordinary differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, V. I. (1964). Instability of dynamical systems with many degrees of freedom,Sov. Math. Dokl. 5, 581–585.

    Google Scholar 

  • Arnold, V. I. (1973).Ordinary Differential Equations, MIT Press, Cambridge, MA, and London, England.

    Google Scholar 

  • Arnold, V. I. (1988).Dynamical Systems III, Encyclopedia of Mathematical Sciences, Vol. 3, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo.

    Google Scholar 

  • Bishop, A. R., Flesch, R., Forest, M. G., McLaughlin, D. W., and Overman, E. A. (1990). Correlations between chaos in a perturbed sine-Gordon equation and a truncated model system.SIAM J. Math. Anal. 21, 1511–1536.

    Google Scholar 

  • Chow, S. N., Hale, J., and Mallet-Paret, J. (1980). An example of bifurcation to homoclinic orbits.J. Diff. Eqs. 37, 351–373.

    Google Scholar 

  • David, D., Holm, D. D., and Tratnik, M. V. (1990). Hamiltonian chaos in nonlinear optical polarization dynamics.Phys. Rep. 187, 283–367.

    Google Scholar 

  • Feng, Z. C. (1990). Private communication.

  • Feng, Z. C., and Sethna, P. R. (1989). Symmetry-breaking bifurcations in resonant surface waves.J. Fluid Mech. 199, 495–518.

    Google Scholar 

  • Feng, Z. C., and Sethna, P. R. (1990). Global bifurcation and chaos in parametrically forced systems with one-one resonance.Dynamics and Stability of Systems 5, 201–225.

    Google Scholar 

  • Feng, Z. C., and Wiggins, S. (1992). On the existence of chaos in a class of two-degree of freedom, damped, parametrically forced mechanical systems with brokenO(2) symmetry.ZAMP 44, 201–248.

    Google Scholar 

  • Fenichel, N. (1971). Persistence and smoothness of invariant manifolds for flows.Ind. Univ. Math. J. 21, 193–225.

    Google Scholar 

  • Fenichel, N. (1974). Asymptotic stability with rate conditions.Ind. Univ. Math. J. 23, 1109–1137.

    Google Scholar 

  • Fenichel, N. (1977). Asymptotic stability with rate conditions, II.Ind. Univ. Math. J. 26, 81–93.

    Google Scholar 

  • Fenichel, N. (1979). Geometric singular perturbation theory for ordinary differential equations.J. Diff. Eq. 31, 53–98.

    Google Scholar 

  • Goldstein, H. (1980).Classical Mechanics, 2nd ed., Addison-Wesley, Reading, MA.

    Google Scholar 

  • Greenspan, B. D., and Holmes, P. J. (1984). Repeated resonance and homoclinic bifurcation in a periodically forced family of oscillators,SIAM J. Math. Anal. 15, 69–97.

    Google Scholar 

  • Gu, X. M., and Sethna, P. R. (1987). Resonant surface waves and chaotic phenomena,J. Fluid. Mech. 183, 543–565.

    Google Scholar 

  • Guckenheimer, J., and Holmes, P. J. (1983).Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields, Springer-Verlag, New York, Heidelberg, Berlin.

    Google Scholar 

  • Haller, G., and Wiggins, S. (1993). Orbits homoclinic to resonances: The Hamiltonian case.Physica D 66, 298–346.

    Google Scholar 

  • Holm, D. D., and Kovačič, G. (1992). Homoclinic chaos in a laser-matter system.Physica D 56, 270–300.

    Google Scholar 

  • Holm, D. D., Kovačič, G., and Sundaram, B. (1991). Chaotic laser-matter interaction.Phys. Lett. A 154, 346–352.

    Google Scholar 

  • Holmes, P. J. (1986). Chaotic motions in a weakly nonlinear model for surface waves.J. Fluid. Mech. 162, 365–388.

    Google Scholar 

  • Holmes, P. J., and Marsden, J. E. (1982). Horseshoes in perturbation of Hamiltonian systems with two degrees of freedom.Comm. Math. Phys. 82, 523–544.

    Google Scholar 

  • Jones, C. K. R. T., and Kopell, N. (1992). Tracking invariant manifolds with differential forms.J. Diff. Eq. (in press).

  • Kovačič, G. (1992a). Hamiltonian dynamics of orbits homoclinic to a resonance band.Phys. Lett. A 167, 137–142.

    Google Scholar 

  • Kovačič, G. (1992b). Dissipative dynamics of orbits homoclinic to a resonance band.Phys. Lett. A 167, 143–150.

    Google Scholar 

  • Kovačič, G. (1992c). Singular perturbation theory for homoclinic orbits in a class of near-integrable dissipative systems. Preprint.

  • Kovačič, G., and Wiggins, S. (1992). Orbits homoclinic to resonances with an application to chaos in a model of the forced and damped Sine-Gordon equation.Physica D 57, 185–225.

    Google Scholar 

  • Lerman, L. M., and Umanski, Ia. L. (1984). On the existence of sparatrix loops in four-dimensional systems similar to integrable Hamiltonian systems.PMM USSR 47, 335–340.

    Google Scholar 

  • McLaughlin, D., Overman, E., Wiggins, S., and Xiong, C. (1993). Homoclinic behavior for a 2 mode truncation of NLS. Preprint.

  • Melnikov, V. K. (1963). On the stability of the center for time periodic perturbations.Trans. Moscow Math. 12, 1–57.

    Google Scholar 

  • Poincaré, H. (1899).Les Méthodes Nouvelles de la Mécanique Celeste, Gauthier-Villars, Paris.

    Google Scholar 

  • Robinson, C. (1988). Horseshoes for autonomous Hamiltonian systems using the Melnikov integral.Ergod. Th. Dynam. Syst. 8, 395–409.

    Google Scholar 

  • Sakamoto, K. (1990). Invariant manifolds in singular perturbation problems for ordinary differential equations.Proc. Roy. Soc. Edinburgh A-Math. 116, 45–78.

    Google Scholar 

  • Wiggins, S. (1988).Global Bifurcations and Chaos: Analytical Methods, Springer-Verlag, New York.

    Google Scholar 

  • Wiggins, S. (1990).Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, New York, Berlin, Heidelberg, London, Paris, Tokyo, Hong Kong.

    Google Scholar 

  • Yang, X. L., and Sethna, P. R. (1991). Local and global bifurcations in parametrically excited vibrations of nearly square plates.Int. J. Nonlin. Mech. 26, 199–220.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovačič, G. Singular perturbation theory for homoclinic orbits in a class of near-integrable Hamiltonian systems. J Dyn Diff Equat 5, 559–597 (1993). https://doi.org/10.1007/BF01049139

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01049139

Key words

Navigation