Skip to main content
Log in

The influence of alloying elements on the development and maintenance of protective scales

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Some of the important principles that determine the establishment, growth and long-term maintenance of protective Cr2O3, Al2O3 and SiO2 scales on hightemperature iron-, nickel- and cobalt-base alloys are reviewed and discussed. Emphasis is placed on the effects of alloying elements and other additions, such as third elements and reactive elements or oxide dispersions, on each of these processes. Particular attention is paid to transport processes in the scales and the importance of short-circuit paths. Some of the important parameters that influence the long-term mechanical stability of such scales are considered and evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. A. Golightly, F. H. Stott, and G. C. Wood,J. Electrochem. Soc. 126, 1035 (1979).

    Google Scholar 

  2. F. H. Stott, G. J. Gabriel, F. I. Wei, and G. C. Wood,Werkst. Korros. 38, 521 (1987).

    Google Scholar 

  3. D. P. Whittle and J. Stringer,Phil. Trans. R. Soc. London A295, 309 (1980).

    Google Scholar 

  4. G. C. Wood,Oxid. Met. 2, 11 (1970).

    Google Scholar 

  5. G. R. Wallwork,Rep. Prog. Phys. 39, 401 (1976).

    Google Scholar 

  6. B. Chattopadhyay and G. C. Wood,Oxid. Met. 2, 373 (1970).

    Google Scholar 

  7. F. H. Stott, P. K. N. Bartlett, and G. C. Wood,Mater. Sci. Eng. 8, 163 (1987).

    Google Scholar 

  8. H. Hindam and D. P. Whittle,Oxid. Met. 18, 245 (1982).

    Google Scholar 

  9. A. Atkinson and R. I. Taylor,Transport in Non-Stoichiometric Compounds, G. Simkovich and V. S. Stubican, eds. (Plenum, New York, 1985), p. 285.

    Google Scholar 

  10. V. R. Howes,Corros. Sci. 10, 99 (1970).

    Google Scholar 

  11. D. Caplan and G. I. Sproule,Oxid. Metl. 9, 459 (1975).

    Google Scholar 

  12. T. N. Rhys-Jones, H. J. Grabke, and H. Kudielka,Werkst. Korros. 38, 65 (1987).

    Google Scholar 

  13. P. Y. Hou and J. Stringer,Oxid. Met. 29, 45 (1988).

    Google Scholar 

  14. J. Stringer, B. A. Wilcox, and R. I. Jaffee,Oxid. Met. 5, 11 (1972).

    Google Scholar 

  15. O. T. Goncel, J. Stringer, and D. P. Whittle,Corros. Sci. 18, 701 (1978).

    Google Scholar 

  16. T. N. Rhys-Jones, H. J. Grabke, and H. Kudielka,Corros. Sci. 27, 49 (1987).

    Google Scholar 

  17. F. N. Stott, J. S. Punni, G. C. Wood, and G. Dearnaley, inTransport in Non-Stoichiometric Compounds, G. Simkovich and V. S. Stubican, eds. (Plenum, New York, 1985), p. 463.

    Google Scholar 

  18. M. J. Bennett, B. A. Bellamy, C. F. Knights, N. Meadows, and N. J. Eyre,Mater. Sci. Eng. 69, 359 (1985).

    Google Scholar 

  19. J. M. Hamikian and D. I. Otter,Oxid. Met. 38, 139 (1992).

    Google Scholar 

  20. J. Stringer and P. Y. Hou, inCorrosion and Particle Erosion at High Temperatures, V. Srinivasan and K. Vedula, eds. (TMS-AIME Annual Meeting, Las Vegas, 1989), p. 383.

  21. C. M. Cottell, G. J. Yurek, R. J. Hussey, D. F. Mitchell and M. J. Graham,J. Electrochem. Soc. 134, 1871 (1987).

    Google Scholar 

  22. K. Przybylski, A. J. Garratt-Reed, and G. J. Yurek,J. Electrochem. Soc. 135, 509 (1988).

    Google Scholar 

  23. M. J. Bennett, J. A. Desport, M. R. Houlton, P. A. Labun, and J. M. Titchmarsh,Mater. Sci. Technol. 4, 1107 (1988).

    Google Scholar 

  24. C. M. Cottell, G. J. Yurek, R. J. Hussey, D. F. Mitchell, and M. J. Graham,Oxid. Met. 34, 173 (1990).

    Google Scholar 

  25. H. Nagai and M. Okabayashi,Trans. Jpn. Inst. Met. 22, 101 (1981).

    Google Scholar 

  26. D. M. Duffy and P. W. Tasker,Phil. Mag. A54, 759 (1986).

    Google Scholar 

  27. D. G. Lees,Oxid. Met. 27, 75 (1987).

    Google Scholar 

  28. P. Fox, D. G. Lees, and G. W. Lorimer,Oxid. Met. 36, 491 (1991).

    Google Scholar 

  29. B. Pieraggi and R. A. Rapp,Acta Met. 36, 1281 (1988).

    Google Scholar 

  30. B. Pieraggi and R. A. Rapp,J. Electrochem. Soc. 140, 2844 (1993).

    Google Scholar 

  31. P. Y. Hou and J. Stringer,Oxid. Met. 34, 299 (1990).

    Google Scholar 

  32. C. Wagner,Corros. Sci. 5, 751 (1965).

    Google Scholar 

  33. J. A. Nesbitt,J. Electrochem. Soc. 136, 1511, 1518 (1989).

    Google Scholar 

  34. C. Wagner,Z. Elektrochem. 63, 772 (1959).

    Google Scholar 

  35. W. W. Smeltzer and D. P. Whittle,J. Electrochem. Soc. 125, 1116 (1978).

    Google Scholar 

  36. J. Morrel, M. S. Thompson, and O. F. Devereux,Oxidation of Metals and Associated Mass Transport (The metallurigcal Society Inc., 1987), p. 315.

  37. H. W. Pickering,J. Electrochem. Soc. 119, 641 (1972).

    Google Scholar 

  38. F. A. Golightly, G. C. Wood, and F. H. Stott,Oxid. Met. 14, 217 (1980).

    Google Scholar 

  39. J. P. Sauer, R. A. Rapp, and J. P. Hirth,Oxid. Met. 18, 285 (1982).

    Google Scholar 

  40. P. R. S. Jackson and G. R. Wallwork,Austral. Inst. Met. 78 (1982).

  41. F. H. Stott and G. C. Wood,Corros. Sci. 1, 799 (1971).

    Google Scholar 

  42. P. Tomaszewicz and G. R. Wallwork, Corrosion-NACE-40, 152, NACE Houston, 1984.

    Google Scholar 

  43. G. Meier,Mater. Sci. Eng. A120, 1 (1989).

    Google Scholar 

  44. S. Guan, J. Corkum, and W. W. Smeltzer, inHigh Temperature Corrosion of Advanced Materials and Protective Coatings, Y. Saito, B. Dray and T. Marayama, eds. (Elsevier, Amsterdam, 1992), p. 75.

    Google Scholar 

  45. R. Prescott and M. J. Graham,Oxid. Met. 38, 73 (1992).

    Google Scholar 

  46. F. H. Stott, T. P. D. Levi, G. C. Wood, and J. Stringer, unpublished work.

  47. T. P. D. Levi, Ph.D. thesis, University of Manchester, 1992.

  48. G. I. Batlin,Atom. Svaka 1, 70 (1982).

    Google Scholar 

  49. W. C. Hagel,Corrosion 21, 316 (1965).

    Google Scholar 

  50. J. Jedlinski,Oxid. Met. 39, 55 (1993).

    Google Scholar 

  51. G. C. Wood and F. H. Stott, inHigh Temperature Corrosion, R. A. Rapp, ed. (NACE-6, NACE, Houston, 1983), p. 227.

    Google Scholar 

  52. R. Prescott and M. J. Graham,Oxid. Met. 38, 233 (1992).

    Google Scholar 

  53. P. A. Van Manen, E. W. A. Young, D. Schalkoard, C. J. Van der Wekken, and J. H. W. de Wit,Surf. interface Anal. 12, 391 (1988).

    Google Scholar 

  54. G. C. Rybicki and J. L. Smialek,Oxid. Met. 31, 275 (1989).

    Google Scholar 

  55. P. J. Mosely, K. R. Hyde, B. A. Bellamy, and G. Tappin,Corros. Sci. 24, 547 (1984).

    Google Scholar 

  56. J. Peters and H. Grabke,Werkst Korros 35, 385 (1984).

    Google Scholar 

  57. J. K. Doychak, J. L. Smialek, and T. E. Mitchell,Proc. Int. Cong. on Metallic Corrosion, Vol. 1, p. 35, 1984.

    Google Scholar 

  58. M. J. Graham, J. Eldridge, D. F. Mitchell, and R. J. Hussey,Mater. Sci. forum. 43, 207 (1989).

    Google Scholar 

  59. K. P. R. Ready, J. L. Smialek, and A. R. Cooper,Oxid. Met. 17, 429 (1982).

    Google Scholar 

  60. E. W. A. Young and J. H. W. de Wit,Solid State Ionics 16, 39 (1985).

    Google Scholar 

  61. E. W. A. Young and J. H. W. de Wit,Oxid. Met. 26, 351 (1986).

    Google Scholar 

  62. J. Jedlinski and S. Mrowec,Mater. Sci. Eng. 87, 281 (1987).

    Google Scholar 

  63. G. B. Abderrazik, A. Moulin, A. M. Huntz, E. W. A. Young, and J. H. W. de Wit,Solid State Ionics 22, 285 (1987).

    Google Scholar 

  64. W. J. Quadakkers, H. Holzbrecher, K. G. Briefs, and H. Beske,Oxid. Met. 32, 67 (1989).

    Google Scholar 

  65. R. Prescott, D. F. Mitchell, G. I. Sproule, R. J. Hussey, and M. J. Graham,High Temperature Corrosion of Advanced Materials and Protective Coatings, Y. Saito, B. Onay, and T. Maryama, eds. (North-Holland, Amsterdam, 1992), p. 83.

    Google Scholar 

  66. B. A. Pint, J. R. Martin, and L. W. Hobbs,Oxid. Met. 39, 167 (1993).

    Google Scholar 

  67. J. Jedlinski,Solid State Phenom. 21/22, 335 (1992).

    Google Scholar 

  68. J. L. Smialek,Metall. Trans. 9A, 309 (1978).

    Google Scholar 

  69. H. Hindam and W. W. Smeltzer,J. Electrochem. Soc. 127, 1630 (1980).

    Google Scholar 

  70. H. Hindam and W. W. Smeltzer,Oxid. Met. 14, 337 (1980).

    Google Scholar 

  71. D. J. Young and M. Cohen,J. Electrochem. Soc. 124, 769 (1977).

    Google Scholar 

  72. B. A. Pint and L. W. Hobbs,Oxid. Met. 41, 203 (1994).

    Google Scholar 

  73. A. G. Evans, G. B. Cromley, and R. E. Demaray,Oxid. Met. 20, 193 (1983).

    Google Scholar 

  74. I. M. Allan, D. P. Whittle, and J. Stringer,Oxid. Med. 12, 35 (1978).

    Google Scholar 

  75. E. J. Felten and F. S. Pettit,Oxid. Met. 10, 189 (1979).

    Google Scholar 

  76. J. Smialek, NASA Technical Memorandum 81676, Cleveland, Ohio, 1981.

  77. F. A. Golightly, F. H. Stott, and G. C. Wood,Oxid. Met. 10, 163 (1976).

    Google Scholar 

  78. J. D. Kuenzly and D. L. Douglass,Oxid. Met. 8, 139 (1974).

    Google Scholar 

  79. J. G. Geodjen and D. A. Shores,Oxid. Met. 37, 125 (1992).

    Google Scholar 

  80. H. J. Schmutzler and H. J. Grabke,Oxid. Met. 39, 15 (1993).

    Google Scholar 

  81. V. K. Tolpygo and H. J. Grabke,Oxid. Met. 41, 343 (1994).

    Google Scholar 

  82. F. N. Rhines and J. S. Wolf,Metall. Trans. 1, 1701 (1870).

    Google Scholar 

  83. R. Raj and M. F. Ashby,Acta Met. 23, 653 (1975).

    Google Scholar 

  84. A. G. Evans,Recent Advances in Creep of Engineering Alloy Structures (Pineridge, Swansea, 1982), p. 831.

    Google Scholar 

  85. C. L. Briant and R. A. Mulford,Metall. Trans. 13A, 745 (1982).

    Google Scholar 

  86. V. Ikeda, K. Nii, and K. Yoshihara, Proc. JIMIS-3, High Temperature Corrosion of Metals and Alloys, Japan Inst. Metals, 1982, p. 207.

  87. A. W. Funkenbusch, J. G. Smeggil, and N. S. Bornstein,Metall. Trans. 16A, 1164 (1985).

    Google Scholar 

  88. J. L. Smialek and R. Browning, Proc. 168th Meeting Electrochem. Soc., Las Vegas, 1985.

  89. P. C. Rowlands, M. I. Manning, and J. Soo,Proc. Corr. Symp. on Interactions Between Corrosion and Metal Stresses at High Temperature, Metals Society, London, 1980, p. 289.

  90. C. S. Giggins and F. S. Pettit, Report ARL 75-0234, Pratt and Whitney Aircraft, Connecticut, 1975.

    Google Scholar 

  91. R. A. Rapp,Metall. Trans. 15A, 765 (1983).

    Google Scholar 

  92. S. N. Basu and J. W. Holloran,Oxid. Met. 27, 143 (1987).

    Google Scholar 

  93. J. Jedlinski and G. Borchardt,Oxid. Met. 36, 317 (1991).

    Google Scholar 

  94. M. V. Speight and J. E. Harris,Acta Met. 26, 1043 (1978).

    Google Scholar 

  95. A. Atkinson,Corros. Sci. 22, 347 (1982).

    Google Scholar 

  96. J. S. Sheasby and D. B. Gory,Oxid. Met. 12, 527 (1978).

    Google Scholar 

  97. L. D. Hou, S. K. Tiku, H. A. Wang, and F. A. Kröger,J. Mater. Sci. 14, 1817 (1979).

    Google Scholar 

  98. F. A. Kröger, High Temperature Corrosion, R. A. Rapp, ed. (NACE-6, NACE, Houston, 1983), p. 89.

    Google Scholar 

  99. S. Mrowec,Oxid. Met. 23, 266 (1985).

    Google Scholar 

  100. T. A. Ramanarayanan, R. Ayer, R. Petkovic-Luton, and D. P. Leta,Oxid. Met. 29, 445 (1988).

    Google Scholar 

  101. D. P. Moon,Mater. Sci. Tech. 5, 754 (1989).

    Google Scholar 

  102. B. A. Pint, A. Jain, and L. W. Hobbs, Mat. Res. Soc. Symp. Proc., Vol. 288, Materials Research Society, 1993, p. 1013.

    Google Scholar 

  103. W. J. Quadakkers, K. Schmidt, H. Grubmeier, and E. Wallura,Mater. High Temp. 10, 23 (1992).

    Google Scholar 

  104. J. Jedlinski and G. Borchardt,Proc. Symp. Oxide Films on Metals and Alloys, Vol. 92–22, Electrochem. Soc., 1992, p. 670.

    Google Scholar 

  105. P. Burtin, J. P. Brunelle, M. Pijolat, and M. Soustelle,Appl. Ctal. 34, 225 (1987).

    Google Scholar 

  106. M. Uzawa, M. Kimura, and A. Isogai,J. Mater Sci. Lett. 9, 709 (1990).

    Google Scholar 

  107. T. A. Ramanarayanan, M. Raghavan, and R. Petkovic-Luton,Oxid. Met. 22, 83 (1984).

    Google Scholar 

  108. P. Choquet and R. Mevrel,Mater. Sci. Eng. A120 153 (1989).

    Google Scholar 

  109. W. J. Quadakkers, W. Speier, M. Holzbrecher, and H. Nickel,Proc. Conf. on Microscopy of Oxidation, Cambridge, 1991, p. 149.

  110. W. J. Quadakkers, M. Holzbrecher, K. G. Briefs, and H. Beske, inRole of Active Elements in the Oxidation Behaviour of High-Temperature Metals and Alloys, E. Lang, ed. (Elsevier, London, 1989), p. 155.

    Google Scholar 

  111. K. Pryzbylski and S. Mrowec,Proc. Int. Cong. on Metallic Corrosion, Vol. 1, 1984, p. 47.

    Google Scholar 

  112. A. M. Huntz, G. Ben Abderzik, G. Moulin, E. W. A. Young, and J. H. W. de Wit,Appl. Surf. Sci. 28, 345 (1987).

    Google Scholar 

  113. S. Mrowec and J. Jedlinski, Workshop on Oxidation of High-Temperature Intermetallics, TMS, 1988, p. 57.

  114. B. A. Pint,Electrochem. Soc. Extended Abstracts 93-2, 676, 678 (1993).

    Google Scholar 

  115. B. A. Pint and L. W. Hobbs,Electrochem Soc. Extended Abstracts 93-1, 1707 (1993).

    Google Scholar 

  116. J. Jedlinski,Oxid. Met. 39, 61 (1993).

    Google Scholar 

  117. M. M. El-Aiat and F. A. Kröger,J. Am. Ceram. Soc. 65, 280 (1982).

    Google Scholar 

  118. A. B. Anderson, S. P. Mehandru, and J. L. Smialek,J. Electrochem. Soc. 32, 1695 (1985).

    Google Scholar 

  119. D. Delauney and A. M. Huntz,J. Mater. Sci. 17, 2027 (1982).

    Google Scholar 

  120. J. Nowok,Oxid. Met. 18, 1 (1982).

    Google Scholar 

  121. D. Delauney, A. M. Huntz, and P. Lacombe,Corros. Sci. 20, 1109 (1980).

    Google Scholar 

  122. M. N. Lagrange, A. M. Huntz, and J. H. Davidson,Corros. Sci. 24, 613 (1984).

    Google Scholar 

  123. J. R. Nicholls and P. Hancock inRole of Active Elements in the Oxidation Behaviour of High-Temperature Metals and Alloys, E. Lang, ed.) (Elsevier, London, 1989), p. 195.

    Google Scholar 

  124. D. L. Douglass and J. S. Armijo,Oxid. Met. 2, 207 (1970).

    Google Scholar 

  125. A. Kumar and D. L. Douglass,Oxid. Met. 10, 1 (1976).

    Google Scholar 

  126. R. G. Milner and V. Nagarajan,Oxid. Met. 15, 295 (1981).

    Google Scholar 

  127. H. E. Evans, D. A. Hilton, R. A. Holm, and S. J. Webster,Oxid. Met. 14, 235 (1980).

    Google Scholar 

  128. H. E. Evans, D. A. Hilton, R. A. Holm, and S. J. Webster,Oxid. Met. 19, 1 (1983).

    Google Scholar 

  129. M. J. Bennett, J. A. Despot, and P. A. Labun,Proc. Roy. Soc. A412, 223 (1987).

    Google Scholar 

  130. J. Robertson, M. A. M. Khan, and M. I. Manning, CEGB Report RD/L/3433/R88 1989.

  131. M. J. Bennett, J. A. Desport, and P. A. Labun,Oxid. Met. 22, 291 (1984).

    Google Scholar 

  132. O. Kubaschewski and C. B. Alcock,Metallurgical Chemistry (Pergamon Press, Oxford, 1979), p. 378.

    Google Scholar 

  133. F. H. Stott and F. I. Wei,Oxid. Met. 31, 369 (1989).

    Google Scholar 

  134. F. H. Stott, F. I. Wei, G. J. Gabriel, and G. C. Wood, inHigh-Temperature Materials Chemistry IV, Z. A. Munir, and H. Tagawa, eds. (The Electrochemical Society, 1988), pp. 88–5.

  135. T. Adachi and G. H. Meier,Oxid. Met. 27, 347 (1987).

    Google Scholar 

  136. P. Jorgensen,J. Chem. Phys. 37, 874 (1962).

    Google Scholar 

  137. P. Jorgensen,J. Electrochem. Soc. 110, 461 (1963).

    Google Scholar 

  138. F. A. Kröger, inHigh Temerature Corrosion, R. A. Rapp, ed. (NACE-6, 1983, p. 89.

  139. E. L. Williams,J. Am. Ceram. Soc. 46, 14 (1963).

    Google Scholar 

  140. M. A. Hopper, R. A. Clarke, and L. Young,J. Electrochem. Soc. 122, 1216 (1975).

    Google Scholar 

  141. T. G. Mills and F. A. Kröger,J. Electrochem. Soc. 120, 1582 (1973).

    Google Scholar 

  142. S. S. Cristy and J. B. Condon,J. Electrochem. Soc. 128, 2170 (1981).

    Google Scholar 

  143. A. Atkinson and J. W. Gardner,Corros. Sci. 21, 49 (1981).

    Google Scholar 

  144. F. H. Stott,Rep. Prog. Phys. 50, 861 (1987).

    Google Scholar 

  145. F. H. Stott and A. Atkinson,Mater. High Temp. in press.

  146. K. P. Lillerud and P. Kofstad,J. Electrochem. Soc. 127, 2397 (1980).

    Google Scholar 

  147. F. H. Stott,Mater. Sci. Tech. 4, 431 (1988).

    Google Scholar 

  148. H. E. Evans,Mater. Sci. Tech. 4, 415 (1988).

    Google Scholar 

  149. D. R. Holmes and R. T. Pasco,Werkst. Korros. 23, 741 (1972).

    Google Scholar 

  150. J. Asher, S. Sugden, M. J. Bennett, R. W. M. Hawes, D. J. Savage, and J. B. Price,Werkst. Korros. 38, 306 (1987).

    Google Scholar 

  151. G. C. Wood and J. Stringer,J. Phys. IV,3, 65 (1993).

    Google Scholar 

  152. J. Stringer,Werkst. Korros. 23, 747 (1972).

    Google Scholar 

  153. A. M. Stoneham and P. W. Tasker,Mater. Sci. Tech. 41, 382 (1988).

    Google Scholar 

  154. A. M. Stoneham and P. W. Tasker,Ceramic Microstructures 86: Role of Interfaces, J. A. Pask, ed. (Plenum, New York, 1988).

    Google Scholar 

  155. J. Robertson and M. I. Manning,Mater. Sci. Tech. 6, 81 (1990).

    Google Scholar 

  156. D. R. Sigler,Oxid. Met. 29, 23 (1988).

    Google Scholar 

  157. R. P. Messner and C. L. Briant,Acta Met. 30, 457 (1982).

    Google Scholar 

  158. K. L. Luthra and C. L. Briant,Oxid. Met. 26, 397 (1986).

    Google Scholar 

  159. H. J. Schmutzler, H. Viefhaus, and H. J. Grabke,Surf. Interface Anal. 18, 581 (1992).

    Google Scholar 

  160. P. Hou and J. Stringer,Oxid. Met. 38, 323 (1992).

    Google Scholar 

  161. A. Rahmel and M. Schutze,Oxid. Met. 38, 255 (1992).

    Google Scholar 

  162. L. B. Pfeil, U.K. Patent Specification 459848, 1937.

  163. L. B. Pfeil, U.K. Patent Specification 594088, 1945.

  164. A. M. Huntz, inRole of Active Element in the Oxidation Behaviour of High-Temperature Metals and Alloys, E. Lang, ed. (Elsevier, London, 1989), p. 81.

    Google Scholar 

  165. K. Przybylski, inReactivity of Solids, P. Barret and L. C. Dufour, eds. (Elsevier New York, 1985), p. 241.

    Google Scholar 

  166. P. Moulin, A. M. Huntz, G. Beranger, and P. Lacombe,Scripta Met. 11, 533 (1977).

    Google Scholar 

  167. H. E. Evans, D. A. Hilton, R. A. Holme, and S. J. Webster,Oxid. Met. 12, 473 (1978).

    Google Scholar 

  168. M. Sakiyama, P. Tomaszewicz, and G. R. Wallwork,Oxid. Met. 13, 311 (1979).

    Google Scholar 

  169. P. Y. Hou and J. Stringer,Acta Met. Mat. 39, 841 (1991).

    Google Scholar 

  170. J. Stringer and G. C. Wood,Mater. Res. Soc. Symp. Proc. 119, 185 (1988).

    Google Scholar 

  171. J. G. Smeggil, A. W. Funkenbusch, and N. S. Bornstein, Proc. 165th Meeting of Electrochem. Soc., Cincinnati, Ohio, 1984.

  172. J. G. Smeggil and A. J. Shuskus,J. Vac. Sci. Tech. A4, 2577 (1986).

    Google Scholar 

  173. C. G. H. Walker, Ph.D. thesis, University of York, 1986.

  174. K. L. Luthra and C. L. Briant,Mater. Sci. Forum 43, 299 (1989).

    Google Scholar 

  175. A. S. Khanna, W. J. Quadakkers, and C. Wasserfuhr, inRole of Active Elements in the Oxidation Behaviour of High-Temperature Metals and Alloys E. Lang, ed. (Elsevier, London, 1989), p. 282.

    Google Scholar 

  176. G. Dearnaley,Corros. Sci. 32, 113 (1990).

    Google Scholar 

  177. A. H. Cottrell,Mater. Sci. Tech. 6, 326 (1990).

    Google Scholar 

  178. Y. Ikeda, M. Tosa, Y. Yoshihara, and K. Nii, 1S1 J Int. 29, 966 (1989).

  179. B. A. Pint and L. W. Hobbs, Submitted to Materials Research Society Fall Meeting, 1994.

  180. M. J. Bennett, Proc. 10th Int. Cong. Met. Corr., vol. 4, (Oxford and IBH Publishing Co., Oxford, 1987), p. 3761.

    Google Scholar 

  181. M. J. Bennett, H. E. Bishop, P. A. Chalker, and A. T. Tuson,Mater. Sci. Eng. 90, 177 (1987).

    Google Scholar 

  182. M. J. Bennett and A. T. Tuson,Mater. Sci. Eng. A116, 79 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stott, F.H., Wood, G.C. & Stringer, J. The influence of alloying elements on the development and maintenance of protective scales. Oxid Met 44, 113–145 (1995). https://doi.org/10.1007/BF01046725

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01046725

Key Words

Navigation