Skip to main content
Log in

Electrolytic production of silicon

  • Reviews of Applied Electrochemistry 18
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A critical survey is given of the research and development studies on the electrodeposition of silicon. Among several systems, three are given particular attention, using inorganic baths with SiO2 or K2SiF6 as the source of silicon respectively, or organic baths. The former two appear capable of development to commercial production. Conceptual designs of a commercial-scale cell for silicon production at temperatures above its melting point, and of a pilot plant for plating silicon from an all-fluoride bath are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Ito and S. Yoshizawa, ‘Advances in Molten Salt Chemistry’, Vol. 4 (edited by G. Mamantov and J. Braunstein), Plenum Press, New York (1981) p. 391.

    Google Scholar 

  2. D. Pletcher, ‘Industrial Electrochemistry’, Chapman and Hall, New York (1982).

    Google Scholar 

  3. V. A. Ettel and B. V. Tilak, ‘Comprehensive Treatise of Electrochemistry: Electrochemical Processing’, Vol. 2 (edited by J. O'M. Bockris, B. E. Conway, E. Yeager and R. E. White) Plenum Press, New York (1981) p. 327.

    Google Scholar 

  4. N. Q. Minh,J. Metals 37 #1 (1985) 28.

    Google Scholar 

  5. F. A. Lowenheim, ‘Electroplating’, McGraw-Hill, New York (1978).

    Google Scholar 

  6. D. G. Lovering, ‘Molton Salt Technology’ (edited by D. G. Lovering) Plenum Press, New York (1982) p. 4.

    Google Scholar 

  7. E. R. Poulsen and J. A. Hall,J. Metals 35 #6 (1983) 60.

    Google Scholar 

  8. D. G. Lovering and D. E. Williams, ‘Molten Salt Technology’ (edited by D. G. Lovering) Plenum Press, New York (1982) p. 91.

    Google Scholar 

  9. J. M. Skeaff,Trans. Inst. Mining and Metallurgy 89 #6 (1980) C71.

    Google Scholar 

  10. J. Robinson, ‘A Special Periodical Report-Electrochemistry’,Royal Chemical Society 8 (1983) 54.

    Google Scholar 

  11. R. C. Dorward,J. Appl. Electrochem. 13 (1983) 569.

    Google Scholar 

  12. B. V. Tilak and J. W. Van Zee,J. Electrochem. Soc. 134 (1987) 279C.

    Google Scholar 

  13. V. D. Dosaj, L. P. Hunt and A. Schei,J. Metals 30 #6 (1978).

  14. A. Sanjurjo, L. Nanis, K. Sancier, R. Bartlett and V. Kapur,J. Electrochem. Soc. 128 (1981) 179.

    Google Scholar 

  15. J. A. Amick,J. Electrochem. Soc. 129 (1982) 864.

    Google Scholar 

  16. D. Elwell,J. Crystal Growth 52 (1981) 741.

    Google Scholar 

  17. G. F. Fulop and R. M. Taylor,Ann. Rev. Mater. Sci. 15 (1985) 197.

    Google Scholar 

  18. D. Elwell and R. S. Feigelson,Solar Energy Matls. 6 (1982) 123.

    Google Scholar 

  19. G. M. Rao and D. Elwell, in ‘Light Metals 1983’ (edited by E. M. Adkins) Met. Soc. AIME, p. 1107.

  20. R. Monnier,Chimia 37 (1983) 109.

    Google Scholar 

  21. H. St. Claire DeVille,Compt. Rend. Acad. Sci. Paris 39 (1854) 323.

    Google Scholar 

  22. C. Gore,Phil. Mag. 7 (1854) 227.

    Google Scholar 

  23. F. Ullik,Ber. Akad. Wien 52 (1865) 1115.

    Google Scholar 

  24. A. Minet,Compt. Rend. Acad. Sci. Paris 112 (1891) 1215.

    Google Scholar 

  25. H. N. Warren,Chem. News 67 (1893) 303.

    Google Scholar 

  26. M. Dodero,Compt. Rend. Acad. Sci. Paris 109 (1934) 566.

    Google Scholar 

  27. Idem., Bull. Soc. Chim. France 6 (1939) 209.

    Google Scholar 

  28. R. Monnier and D. Barakat,Helv. Chim. Acta 40 (1957) 204.

    Google Scholar 

  29. R. Monnier and J. C. Giacometti,Helv. Chim. Acta 47 (1964) 345.

    Google Scholar 

  30. K. Grjotheim and K. Matiasovsky,Chem. zvesti 25 (1971) 249.

    Google Scholar 

  31. K. Grjothiem, K. Matiasovsky, P. Fellner and A. Silny,Can. Met. Quart. 10 (1971) 79.

    Google Scholar 

  32. G. Boe, K. Grjotheim, K. Matiasovsky and P. Fellner,Can. Met. Quart. 10 (1971) 179, 281, 463.

    Google Scholar 

  33. K. Grjotheim, K. Matiasovsky and P. Fellner, in ‘Light Metals 1982’ (edited by J. E. Andersen) AIME, p. 333.

  34. R. Monnier and D. Barakat, US Patents 3219561 (23 Nov 1965) and 3254010 (31 May 1966).

  35. R. A. Huggins and D. Elwell,J. Crystal Growth 37 (1977) 159.

    Google Scholar 

  36. K. E. Johnson, ‘High Temperature Technology’, Butterworths, London (1967) p. 493.

    Google Scholar 

  37. J. A. Poris and R. A. Huggins (unpublished).

  38. R. C. DeMattei, D. Elwell and R. S. Feigelson,J. Electrochem. Soc. 128 (1981) 1712.

    Google Scholar 

  39. J. R. Davis, A. Rohatgi, R. H. Hopkins, P. D. Blais, P. Rai-Choudhury, J. R. McCormick and H. C. Mollenkopf,IEEE Trans. ED-27 (1980) 677.

    Google Scholar 

  40. W. H. Gross, ‘Kirk-Othmer: Encyclopedia of Chemical Technology’, Vol. 12, Wiley, New York (1967) p. 661.

    Google Scholar 

  41. K. Grjotheim, C. Krohn, M. Malinovsky, K. Matiasovsky and J. Thonstead, ‘Aluminium Electrolysis-Fundamentals of the Hall-Herould Process’, Aluminium-Verlag, Dusseldorf (1982).

    Google Scholar 

  42. J. M. Olson and A. Kibbler, Abstracts 5th Amer. Conf. Crystal Growth, San Diego (July 1981) p. 248.

  43. Hitachi Ltd, Japanese patent 58,144,485 (27 Aug 1983); see Chem. Abs. 100: 14515s (1984).

  44. F. H. Hayes, H. M. Bomberger, F. H. Froes, L. Kaufman and H. M. Burte,J. Metals 36 #6 (1984) 70.

    Google Scholar 

  45. G. M. Rao, D. Elwell and R. S. Feigelson,Surface Technology 13 (1981) 331.

    Google Scholar 

  46. U. Cohen,J. Electron. Mater. 6 (1977) 607.

    Google Scholar 

  47. G. M. Rao, D. Elwell and R. S. Feigelson,J. Electrochem. Soc. 127 (1980) 1940.

    Google Scholar 

  48. Idem 128 (1981) 1708.

    Google Scholar 

  49. Idem 130 (1983) 1021.

    Google Scholar 

  50. Idem, Solar Energy Materials 7 (1982) 15.

    Google Scholar 

  51. J. M. Olson and K. L. Carleton,J. Electrochem. Soc. 128 (1981) 2698.

    Google Scholar 

  52. T. L. Rose, T. O. Hoover, R. A. Boudreau, S. H. White and R. D. Rauh, Proc. 3rd Intl. Symp. Molten Salts (edited by G. Mamantov, M. Blander and G. P. Smith) (1981) p. 550.

  53. W. R. Gass, R. E. Witowski, I. E. Kanter, A. F. Beringer and T. A. Temofonte, Rept. 1982 SERI/TR-8119-2-T5.

  54. R. Boen and J. Bouteillon,J. Appl. Electrochem. 13 (1983) 277.

    Google Scholar 

  55. K. H. Stern and M. E. McCollum,Thin Solid Films 124 (1985) 129.

    Google Scholar 

  56. I. G. Sharma and T. K. Mukherjee,Metall. Trans. 17B (June 1986) 395.

    Google Scholar 

  57. J. De Lepinay, J. Bouteillon, S. Traore, D. Renaud and M. J. Barbier,J. Appl. Electrochem. 17 (1987) 294.

    Google Scholar 

  58. D. Elwell and G. M. Rao,Electrochimica Acta 27 (1982) 673.

    Google Scholar 

  59. A. E. Austin, US Pat. 3990953 (Nov. 9, 1976).

  60. E. R. Bucker and J. A. Amick, US Pat. 4192720 (Mar. 11, 1980).

  61. C. H. Lee and F. A. Kroger,J. Electrochem. Soc. 129 (1982) 936.

    Google Scholar 

  62. T. R. Rama Mohan and F. A. Kroger,Electrochimica Acta 27 (1982) 371.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elwell, D., Rao, G.M. Electrolytic production of silicon. J Appl Electrochem 18, 15–22 (1988). https://doi.org/10.1007/BF01016199

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01016199

Keywords

Navigation