Skip to main content
Log in

The reactions of the oxidase and reductases ofParacoccus denitrificans with cytochromesc

  • Mini-Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Electron transport in theParacoccus denitrificans respiratory chain system is considerably more rapid when it includes the membrane-bound cytochromec 552 than with either solubleParacoccus c 550 or bovine cytochromec; a pool function for cytochromec is not necessary. Low concentrations ofParacoccus or bovine cytochromec stimulate the oxidase activity. This observation could explain the multiphasic Scatchard plots which are obtained. A negatively charged area on the “back side” ofParacoccus c which is not present in mitochondrialc could be a control mechanism forParacoccus reactions.Paracoccus oxidase and reductase reactions with bovinec show the same properties as mammalian systems; and this is true ofParacoccus oxidase reactions with its own soluble cytochromec if added polycation masks the negatively charged area. Evidence for different oxidase and reductase reaction sites on cytochromec include: (1) stimulation of the oxidase but not reductase by a polycation; (2) differences in the inhibition of the oxidase and reductases by monoclonal antibodies toParacoccus cytochromec; and (3) reaction of another bacterial cytochromec withParacoccus reductases but not oxidase. Rapid electron transport occurs in cytochromec-less mutants ofParacoccus, suggesting that the reactions result from collision of diffusing complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albracht, S. P. J., van Verseveld, H. W., Hagen, W. R., and Kalkman, M. L. (1980).Biochim. Biophys. Acta 593, 173–186.

    Google Scholar 

  • Alefounder, P. R., and Ferguson, S. J. (1980).Biochem. J. 192, 231–240.

    Google Scholar 

  • Alefounder, P. R., and Ferguson, S. J. (1981).Biochem. Biophys. Res. Commun. 98, 778–784.

    Google Scholar 

  • Berry, E. A., and Trumpower, B. L. (1985).J. Biol. Chem. 260, 2458–2467.

    Google Scholar 

  • Bickar, D., Lehninger, A. L. and Turrens, J. (1985). InAchievements and Perspectives in Mitochondrial Research, Vol. I:Bioenergetics (Quagliariello, E.,et al., eds.), Elsevier, New York, pp. 367–375.

    Google Scholar 

  • Bolgiano, B., Smith, L., and Davies, H. C. (1988).Biochim. Biophys. Acta 933, 341–350.

    Google Scholar 

  • Bolgiano, B., Smith, L., and Davies, H. C. (1989).Biochim. Biophys. Acta 973, 227–234.

    Google Scholar 

  • Bosma, G., Braster, M., Stouthamer, A. H. and van Verseveld, H. W. (1987a).Eur. J. Biochem. 165, 657–663.

    Google Scholar 

  • Bosma, G., Braster, M., Stouthamer, A. H., and van Verseveld, H. W. (1987b).Eur. J. Biochem. 165, 665–670.

    Google Scholar 

  • Cox, J. C., Ingledew, W. J., Haddock, B. A., and Lawford, H. G. (1978).FEBS Lett. 3, 261–265.

    Google Scholar 

  • Daldal, F., Cheng, S., Applebaum, J., Davidson, E., and Prince, R. C. (1986).Proc. Natl. Acad. Sci. USA 83, 2012–2016.

    Google Scholar 

  • Daldal, F. (1988).J. Bacteriol. 170, 2388–2391.

    Google Scholar 

  • Davidson, V. L., and Kumar, M. A. (1989).FEBS Lett. 245, 271–273.

    Google Scholar 

  • Davies, H. C., Smith, L., and Wasserman, R. (1964).Biochim. Biophys. Acta 85, 238–246.

    Google Scholar 

  • Davies, H. C., Smith, L., and Nava, M. E. (1983).Biochim. Biophys. Acta 725, 238–245.

    Google Scholar 

  • Erecinska, M., Davis, J. S., and Wilson, D. (1979).Arch. Biochem. Biophys. 197, 463–469.

    Google Scholar 

  • Ferguson-Miller, S., Brautigan, D., and Margoliash, E. (1976).J. Biol. Chem. 251, 1104–1115.

    Google Scholar 

  • Haltia, T., Puustinen, A., and Finel, M. (1988).Eur. J. Biochem. 172, 543–546.

    Google Scholar 

  • Hindahl, M. S., Wee, S., Banks, D. H., Tsang, J. C., and Wilkinson, B. J. (1981).Arch. Microbiol. 130, 307–311.

    Google Scholar 

  • Hochli, M., Hochli, L., and Hackenbrock, C. R. (1985).Eur. J. Cell Biol. 38, 1–5.

    Google Scholar 

  • Hochman, J., Ferguson-Miller, S., and Schindler, M. (1985).Biochemistry 24, 2509–2516.

    Google Scholar 

  • Hubbard, J. A. M., Hughes, M. N., Poole, R. K., and Williams, H. D. (1990).FEMS Lett. 67, 197–200.

    Google Scholar 

  • Husain, M., and Davidson, V. L. (1986).J. Biol. Chem. 261, 8577–8580.

    Google Scholar 

  • John, P., and Whatley, F. R. (1975).Nature (London)254, 495–498.

    Google Scholar 

  • Joliot, P., Vermeglio, A., and Joliot, A. (1989).Biochim. Biophys. Acta 975, 336–345.

    Google Scholar 

  • Kennelly, P. J., Timkovich, R., and Cusanovich, M. A. (1981).J. Mol. Biol. 145, 583–602.

    Google Scholar 

  • Koppenol, W. H., and Margoliash, E. M. (1982).J. Biol. Chem. 257, 4426–4437.

    Google Scholar 

  • Kornblatt, J. A., and Luu, H. A. (1986).Eur. J. Biochem. 159, 407–413.

    Google Scholar 

  • Kuo, L.-M., Davies, H. C., and Smith, L. (1984).Biochim. Biophys. Acta 766, 472–482.

    Google Scholar 

  • Kuo, L.-M., Davies, H. C., and Smith, L. (1985).Biochim. Biophys. Acta 809, 388–395.

    Google Scholar 

  • Kuo, L.-M., Davies, H. C., and Smith, L. (1986).Biochim. Biophys. Acta 848, 247–255.

    Google Scholar 

  • Lawford, H. G., Cox, J. C., Garland, P. B., and Haddock, B. A. (1976).FEBS Lett. 64, 369–374.

    Google Scholar 

  • Lorence, R. M., Yoshida, T., Findling, K. L., and Fee, J. A. (1981).Biochem. Biophys. Res. Commun. 99, 591–599.

    Google Scholar 

  • Ludwig, B. (1987).FEMS Microbiol. Rev. 46, 41–56.

    Google Scholar 

  • Ludwig, B., and Gibson, Q. H. (1981).J. Biol. Chem. 256, 10092–10098.

    Google Scholar 

  • Ludwig, B., and Schatz, G. (1980).Proc. Natl. Acad. Sci. USA 77, 196–200.

    Google Scholar 

  • Ludwig, B., Suda, K., and Cerletti, N. (1983).Eur. J. Biochem. 197, 597–602.

    Google Scholar 

  • Margoliash, E., and Schejter, A. (1966).Adv. Protein Chem. 21, 113–286.

    Google Scholar 

  • Matsuura, K., Fukushima, A., Shimada, K., and Satoh, T. (1988).FEBS Lett. 235, 21–25.

    Google Scholar 

  • Minnaert, K. (1961).Biochim. Biophys. Acta 50, 23–34.

    Google Scholar 

  • Probst, I., and Schlegel, H. G. (1976).Biochim. Biophys. Acta 440, 412–428.

    Google Scholar 

  • Reichardt, J. K. V., and Gibson, Q. H. (1983).J. Biol. Chem. 238, 1504–1507.

    Google Scholar 

  • Sapshead, L. M., and Wimpenny, J. W. T. (1972).Biochim. Biophys. Acta 267, 388–397.

    Google Scholar 

  • Scholes, P. B., and Smith, L. (1968a).Biochim. Biophys. Acta 153, 350–362.

    Google Scholar 

  • Scholes, P. B., and Smith, L. (1968b).Biochim. Biophys. Acta 153, 363–375.

    Google Scholar 

  • Scholes, P. B., McLain, G., and Smith, L. (1971).Biochemistry 10, 2072–2076.

    Google Scholar 

  • Smith, L. (1954).Arch. Biochem. Biophys. 50, 315–321.

    Google Scholar 

  • Smith, L., and Conrad, H. (1956).Arch. Biochem. Biophys. 63, 403–413.

    Google Scholar 

  • Smith, L., Davies, H. C., and Nava, M. E. (1974).J. Biol. Chem. 249, 2904–2910.

    Google Scholar 

  • Smith, L., Davies, H. C., and Nava, M. E. (1976).Biochemistry 15, 5827–5831.

    Google Scholar 

  • Smith, L., Davies, H. C. and Nava, M. E. (1979). InCytochrome Oxidase (King, T. E.,et al., eds.), Elsevier, Amsterdam, pp. 293–304.

    Google Scholar 

  • Sone, N., Sekimachi, M., and Kutoh, E. (1987).J. Biol. Chem. 262, 15386–15391.

    Google Scholar 

  • Timkovich, R., and Dickerson, R. E. (1976).J. Biol. Chem. 251, 4033–4046.

    Google Scholar 

  • van Spanning, R. J. M., Wansell, C., Harms, N., Oltmann, L. F., and Stouthamer, A. H. (1990).J. Bacteriol. 172, 986–996.

    Google Scholar 

  • van Verseveld, H. W., Krab, K., Stouthamer, A. H. (1981).Biochim. Biophys. Acta 635, 525–534.

    Google Scholar 

  • van Verseveld, H. W., Braster, M., Boogerd, F. C., Chance, B., and Stouthamer, A. H. (1983).Arch. Microbiol. 135, 229–236.

    Google Scholar 

  • Waring, A., Davis, J. S., Chance, B., and Erecinska, M. (1980).J. Biol. Chem. 255, 6212–6218.

    Google Scholar 

  • Willison, J. C., and John, P. (1979).J. Gen. Microbiol. 115, 443–450.

    Google Scholar 

  • Yang, X., and Trumpower, B. L. (1986).J. Biol. Chem. 261, 12282–12289.

    Google Scholar 

  • Zhu, Q.-S., and Beattie, D. S. (1988).J. Biol. Chem. 263, 193–199.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, L., Davies, H.C. The reactions of the oxidase and reductases ofParacoccus denitrificans with cytochromesc . J Bioenerg Biomembr 23, 303–319 (1991). https://doi.org/10.1007/BF00762224

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762224

Key Words

Navigation