Skip to main content
Log in

Chronic elevation of brain GABA by γ-vinyl GABA treatment does not alter the sensitivity of GABAergic or dopaminergic receptors in rat CNS

  • Original Investigations
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rat brain GABA levels were elevated chronically by daily administration of γ-vinyl GABA, an enzyme-activated, irreversible inhibitor of GABA:2-oxo-gluaarate aminotransferase (GABA-T; EC 2.6.1.19). Following various periods of drug treatment and withdrawal, the sensitivity of dopamine and GABA receptors in the CNS was determined by biochemical and behavioral evaluations. In contrast to chronic haloperidol treatment, none of the treatment schedules with γ-vinyl GABA had any significant effect on parameters such as apomorphine induced locomotor activity, [3H] spiperone binding or dopamine-stimulated adenylate cyclase in the corpus striatum; nor did γ-vinyl GABA treatment affect [3H] GABA binding or GABA-activated [3H] diazepam binding in the cerebral cortex. Moreover, co-administration of γ-vinyl GABA and haloperidol did not alter the ability of the neuroleptic to induce supersensitivity in the striatal dopaminergic system.

Thus, it appears that, in contrast to reported studies using chronic administration of other less specific GABA-T inhibitors such as γ-acetylenic GABA, amino-oxyacetic acid and isonicotinic acid hydrazide or direct GABA agonists such as THIP (4,5,5,7-tetrahydroisoxazolo (5,4-c-)-pyridin-3-ol) or kojic amine, γ-vinyl GABA does not alter the sensitivity of the striatal dopaminergic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartholini G, Scatton B, Zivkovic B, Lloyd KG (1979) On the mode of action of SL 76002, a new GABA receptor agonist. In: Krogsgaard-Larsen P, Scheel-Krüger J, Kofod H (eds) GABA-neurotransmitters. Munksgaard, Copenhagen, pp 326–339

    Google Scholar 

  • Bartholini G (1980) Interaction of striatal dopaminergic, cholinergic and GABA-ergic neurons: Relation to extrapyramidal function. TIPS 1:138–140

    Google Scholar 

  • Bird ED, Mackay AVP, Rayner AN, Iversen LL (1973) Reduced glutamic acid decarboxylase activity of postmortem brain in Huntington's chorea. Lancet 1:1090–1092

    Google Scholar 

  • Brown BL, Albano J, Ekins RP, Sherzil A, Tampion W (1971) A simple and sensitive saturation assay method for the measurement of adenosine 3′,5′-cyclic monophosphate. Biochem J 121:561–562

    Google Scholar 

  • Cattabeni F, Racagni G, Spano PF, Costa E (1980) Long-term effects of neuroleptics. Raven, New York

    Google Scholar 

  • Christensen AV, Hyttel J (1981) Prolonged treatment with the GABA agonist THIP increases dopamine receptor binding more than it changes dopaminergic behaviour in mice. Drug Dev Res 1:255–263

    Google Scholar 

  • Dray A (1979) The striatum and substantia nigra: A commentary on their relationships. Neuroscience 4:1407–1439

    Google Scholar 

  • De Smet Y, Mear JY, Tell G, Schechter PJ, Lhermitte F, Agid Y (1982) Effect of γ-vinyl GABA in Friedreich's ataxia. Can J Neurol Sci 9:171–173

    Google Scholar 

  • Ferkany JW, Enna SJ (1980) Interaction between GABA agonists and the cholinergic muscarinic system in the rat corpus striatum. Life Sci 27:143–149

    Google Scholar 

  • Ferkany JW, Strong R, Enna SJ (1980) Dopamine receptor super-sensitivity in the corpus striatum following chronic elevation of brain GABA. J Neurochem 34:247–249

    Google Scholar 

  • Ferkany JW, Andree TH, Clarke DE, Enna SJ (1981) Neurochemical effects of kojic amine, a GABA-mimetic and its interaction with benzylamine oxidase. Neuropharmacology 20:1177–1182

    Google Scholar 

  • Fuxe K, Anderson K, Ogren SO, Perez De La Mora M, Schwarcz R, Hökfelt T, Energt HP, Gustafsson JA, Skett P (1979) GABA-neurons and their interaction with monoamine neurons. An anatomical, pharmacological and functional analysis. In: Krogsgaard-Larsen P, Scheel-Krüger J, Kofod H (eds) GABA-neurotransmitters. Munksgaard, Copenhagen, pp 74–94

    Google Scholar 

  • Gale K (1980) Chronic blockade of dopamine receptors by anti-schizophrenic drugs enhances GABA binding in substantia nigra. Nature 283:569–570

    Google Scholar 

  • Gardner CR, Klein J, Grove J (1981a) Endogenous GABA determines the characteristics of [3H] GABA binding. Eur J Pharmacol 75:83–92

    Google Scholar 

  • Gardner CR, Richards MH, Grove J (1981 b) Specific GABA-transaminase inhibition increases the neuronal pool of GABA released by potassium-ion depolarization. Proceedings of the 8th Meeting of the Infernational Society for Neurochemistry, p 176

  • Grove J, Schechter PJ, Tell G, Koch-Weser J, Sjoerdsma A, Waiter JM, Marescant C, Rumbach L (1981) Increased GABA, homocarnosine, and β-alanine in cerebrospinal fluid of patients treated with γ-vinyl GABA. Life Sci 28:2431–2439

    Google Scholar 

  • Grove J, Gardner CR, Richards MH (1982) Measurement of release of endogeneous GABA and catabolites of [3H] GABA from synaptosomal preparations using ion-exchange chromatography. Neurochem Res 7:583–593

    Google Scholar 

  • Hornykiewicz O, Lloyd KG, Davidson L (1976) The GABA system, function of the basal ganglia, and Parkinson's disease. In: Roberts E, Chase TN, Tower DB (eds) GABA in nervous system function. Raven, New York, pp 479–485

    Google Scholar 

  • Huot S, Palfreyman MG (1982) Effects of γ-vinyl GABA on food intake of rats. Pharmacol Biochem Behav 17:99–106

    Google Scholar 

  • Iadarola MJ, Gale K (1980) Evaluation of increases in nerve terminal dependent versus nerve terminal-independent compartments of GABA in vivo. Brain Res Bull 5 (Suppl 2):13–19

    Google Scholar 

  • Jung MJ, Metcalf BW (1975) Catalytic inhibition of γ-aminobutyric acid α-ketoglutarate transaminase of bacterial origin by 4-aminohex-5-ynoic acid, a substrate analog. Biochem Biophys Res Commun 67:301–306

    Google Scholar 

  • Jung MJ, Lippert B, Metcalf BW, Böhlen P, Schechter PJ (1977) γ-Vinyl GABA (4-amino-hex-5-enoic acid), a new selective irreversible inhibitor of GABA-T: Effects on brain GABA metabolism in mice. J Neurochem 29:797–802

    Google Scholar 

  • Jung MJ (1978) In vivo biochemistry of GABA transaminase inhibition. In: Seiler N, Jung MJ, Koch-Weser J (eds) Enzyme-activated irreversible inhibitors. Elsevier, Amsterdam, pp 135–148

    Google Scholar 

  • Kebabian JW, Petzold GL, Greengard P (1972) Dopamine-sensitive adenylate cyclase in caudate nucleus of rat brain and its similarities to the dopamine receptor. Proc Natl Acad Sci USA 69:2145–2150

    Google Scholar 

  • Klawans HL (1973) The pharmacology of tardive dyskinesia. Am J Psychiatry 130:82–86

    Google Scholar 

  • Kobayashi K, Miyazawa S, Terahara A, Mishima H, Kurihara H (1976) Gabaculine: γ-Aminobutyrate amino transferase inhibitor of microbial origin. Tetrahedron Lett 7:537–540

    Google Scholar 

  • Krogsgaard-Larsen P, Johnston GAR, Curtis DR, Game CJA, McCulloch RM (1975) Structure and biological activity of a series of confirmationally restricted analogues of GABA. J Neurochem 25:803–809

    Google Scholar 

  • Krogsgaard-Larsen P, Johnston GAR, Lodge D, Curtis DR (1977) A new class of GABA agonists. Nature 268:53–55

    Google Scholar 

  • Leysen JE, Gommeren W (1981) Optimal conditions for [3H] apomorphine binding and anomalous equilibrium binding of [3H] apomorphine and [3H] spiperone to rat striatal membranes: Involvement of surface phenomena versus multiple binding sites. J Neurochem 36:201–219

    Google Scholar 

  • Lippert B, Metcalf BW, Jung MJ, Casara P (1977) 4-Aminohex-5-enoic acid, a selective catalytic inhibitor of 4-aminobutyric aminotransferase in mammalian brain. Eur J Biochem 74:441–445

    Google Scholar 

  • Lloyd KG, Worms P (1980) Sustained GABA receptor stimulation and chronic neuroleptic effects. In: Cattabeni F, Racagni G, Spano PF, Costa E (eds) Long-term effects of neuroleptics. Raven, New York pp 253–258

    Google Scholar 

  • Lloyd KG, Munari C, Worms P, Bossi L, Bancaud J, Talairach J, Morselli PL (1981) The role of GABA mediated neurotransmission in convulsive states. In: Costa E, DiChiara G, Gessa GL (eds) GABA and benzodiazepine receptors. Raven, New York, pp 199–206

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  • Mallorga P, Hamburg M, Tallman JF, Gallager DW (1980) Ontogenetic changes in GABA modulation of brain benzodiazepine binding. Neuropharmacology 19:405–408

    Google Scholar 

  • McGeer PL, McGeer EG (1976) The GABA system and function of the basal ganglia: Huntington's disease. In: Roberts E, Chase TN, Tower DB (eds) GABA in nervous system function, Raven, New York, pp 487–495

    Google Scholar 

  • Palfreyman MG, Robin MM, Zraïka M, Gardner CR, Schechter PJ (1980) Dyskinesia induced by intracerebral injections of GABA-T inhibitors: A striatal or cortical phenomenon? Brain Res Bull 5 (Suppl 2):613–619

    Google Scholar 

  • Palfreyman MG, Schechter PJ, Buckett WR, Tell GP, Koch-Weser J (1981) The pharmacology of GABA-transaminase inhibitors. Biochem Pharmacol 30:817–824

    Google Scholar 

  • Perry TL, Hansen S, Kloster M, (1973) Huntington's chorea, deficiency of gamma-aminobutyric acid in brain. N Engl J Med 288:337–342

    Google Scholar 

  • Roberts E (1974) GABA and nervous system function: A perspective. Biochem Pharmacol 23:2637–2649

    Google Scholar 

  • Schechter PJ, Tranier Y, Jung MJ, Böhlen P (1977) Audiogenic seizure protection by elevated brain GABA concentrations in mice: Effects of γ-acetylenic and γ-vinyl GABA, two irreversible GABA-T inhibitors. Eur J Pharmacol 45:319–328

    Google Scholar 

  • Spokes EGS, Garrett NJ, Rossor MN, Iversen LL (1980) Distribution of GABA in post-mortem brain tissue from control, psychotic and Huntington's chorea subjects. Neurol Sci 48:303–313

    Google Scholar 

  • Tallman JF, Thomas JW, Gallager DW (1978) GABAergic modulation of benzodiazepine binding site sensitivity. Nature 274:383–385

    Google Scholar 

  • Tarsy D, Baldessarini RJ (1974) Behavioral supersensitivity to apomorphine stereotypy following chronic treatment with drugs which interfere with the synaptic function of catecholamines. Neuropharmacology 13:927–930

    Google Scholar 

  • Tell G, Schechter PJ, Koch-Weser J, Cantiniaux P, Chabannes JP, Lambert RA (1981) Effect of γ-vinyl GABA. N Engl J Med 305:581–582

    Google Scholar 

  • Tower DB (1976) GABA and seizures: Clinical correlates in man. In: Roberts E, Chase TN, Tower DB (eds) GABA in nervous system function. Raven, New York, pp 461–478

    Google Scholar 

  • Wagner J, Vitali P, Palfreyman MG, Zraïka M, Huot S (1982) Simultaneous determination of 3,4-dihydroxyphenylalanine, 5-hydroxytryptophan, dopamine, 4-hydroxy-3-methoxy phenylalanine, norepinephrine, 3,4-dihydroxy phenylacetic acid, homovanillic acid, serotonin and 5-hydroxy indolacetic acid in rat cerebrospinal fluid and brain by high performance liquid chromatography with electrochemical detection. J Neurochem 38:1241–1254

    Google Scholar 

  • Yarbrough GG, Williams M, Haubrich DR (1979) The neuropharmacology of a novel γ-aminobutyric acid analog, Kojic amine. Arch Int Pharmacodyn 241:266–279

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gardner, C.R., Mallorga, P., Klein, J. et al. Chronic elevation of brain GABA by γ-vinyl GABA treatment does not alter the sensitivity of GABAergic or dopaminergic receptors in rat CNS. Psychopharmacology 79, 130–136 (1983). https://doi.org/10.1007/BF00427799

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00427799

Key words

Navigation