Skip to main content
Log in

TTV1, TTV2 and TTV3, a family of viruses of the extremely thermophilic, anaerobic, sulfur reducing archaebacterium Thermoproteus tenax

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Three different temperent viruses of the extremely thermophilic chemolithoautotrophic archaebacterium, Thermoproteus tenax, TTV1, TTV2 and TTV3, each contain linear, double-stranded DNA, TTV1 and TTV2 of 16 kb, TTV3 of 27 kb. They are oblong and each consists of an outer envelope and an inner core associated with the DNA.

TTV1 contains four major proteins, an envelope of unknown nature and non-protein material linked to two of the proteins in non-covalent manner. The 5′-ends of the DNA are protected by hydrophobic ligands. The viruses have neither homologies with each other nor with the host.

Lysogens are induced upon sulfur depletion during autotrophic growth. Alternatively, sensitive, non-lysogenic cells allow lytic multiplication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen MB (1959) Studies with Cyanidium caldarium, an anomalously pigmented chlorophyte. Arch Microbiol 32:270–277

    Google Scholar 

  • Darland G, Brock TD, Samsonoff W, Conti SF (1970) A thermophilic acidophilic mycoplasm isolated from a coal refuse pile. Science 170:1416–1418

    Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350

    Google Scholar 

  • Fischer F, Zillig W, Stetter KO, Schreiber G (1983) Chemolithoautotrophic metabolism of anaerobic extremely thermophilic archaebacteria. Nature 301:511–513

    Google Scholar 

  • Fox GE, Stackebrandt E, Hespell RB, Gibson J, Maniloff H, Dyer TA, Wolfe RS, Balch WE, Tanner RS, Magrum LJ, Zablen LB, Blakemore R, Gupta R, Bonen L, Lewis BJ, Stahl DA, Luehrsen KR, Chen KN, Woese CR (1980) The phylogeny of prokaryotes. Science 209:457–463

    Google Scholar 

  • Grant WN, Williams KL (1983) Monoclonal antibody characterisation of slime sheath: the extra-cellular matrix of Dictyostelium discoideum. EMBO J 2:935–940

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Google Scholar 

  • Palm P, Heil A, Boyd D, Grampp B, Zillig W (1975) The reconstitution of Escherichia coli DNA-dependent RNA polymerase from its isolated subunits. Eur J Biochem 53:283–291

    Google Scholar 

  • Paton EB, Khodkova EM, Gurieva NM, Sverdlov ED (1981) Plasmids from various strains of Halobacterium halobium. Bioorganicheskaya Khimiya 7:1532–1537

    Google Scholar 

  • Pfeifer F, Weidinger G, Goebel W (1981) Characterization of plasmids in halobacteria. J Bacteriol 145:369–374

    Google Scholar 

  • Schnabel H, Zillig W, Pfäffle M, Schnabel R, Michel H, Delius H (1982a) Halobacterium halobium phage ϕH. EMBO J 1:87–92

    Google Scholar 

  • Schnabel H, Schramm E, Schnabel R, Zillig W (1982b) Structural variability in the genome of phage ϕH of Halobacterium halobium. Mol Gen Genet 188:370–377

    Google Scholar 

  • Schnabel H, Schnabel R, Yeats S, Tu J, Gierl A, Neumann H, Zillig W (1983) Genome organization and transcription in archaebacteria. In: 4th FEBS Symposium on DNA. Pergamon Press, in press

  • Schnabel R, Thomm M, Gerardy-Schahn R, Zillig W, Stetter KO, Huet J (1983) Structural homology between different archaebacterial DNA-dependent RNA polymerases analyzed by immunological comparison of their components. The EMBO J 2:751–755

    Google Scholar 

  • Simon RD (1978) Halobacterium strain 5 contains a plasmid which is correlated with the presence of gas vacuoles. Nature 273:314–317

    Google Scholar 

  • Stetter KO (1977) Transcription in Lactobacillaceae. DNA-dependent RNA polymerase from Lactobacillus casei. Isolation of transcription factor y. Hoppe Seyler's Z Phys Chem 358:1093–1104

    Google Scholar 

  • Thomm M, Altenbuchner J, Stetter KO (1983) Evidence for a plasmid in a methanogenic bacterium. J Bacteriol 153:1060–1062

    Google Scholar 

  • Torsvik T, Dundas ID (1974) Bacteriophage of Halobacterium salinarium. Nature 248:680–681

    Google Scholar 

  • Torsvik T, Dundas ID (1980) Persisting phage infection in Halobacterium salinarium str. 1. J Gen Virol 47:29–36

    Google Scholar 

  • Tu J, Prangishvilli P, Huber H, Wildgruber G, Zillig W, Stetter KO (1982) Taxonomic relations between archaebacteria including 6 novel genera examined by cross hybridization of DNAs and 16S rRNAs. J Mol Evol 18:109–114

    Google Scholar 

  • Vogt VM (1973) Purification and further properties of single strand specific muclease from Aspergillus oryzae. Eur J Biochem 33:192

    Google Scholar 

  • Voller A, Bidwell DE, Bartlett A (1979) The enzyme linked immunosorbent assay, available from Dynatech.

  • Wais AC, Kon M, Mac Donald RE (1975) Salt-dependent bacteriophage infecting Halobacterium cutirubrum and H. halobium. Nature 256:314–315

    Google Scholar 

  • Weidinger G, Klotz G, Goebel W (1979) A large plasmid from Halobacterium halobium carrying genetic information for gas vacuole formation. Plasmid 2:377–386

    Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proc Natl Acad Sci USA 74:5088–5090

    Google Scholar 

  • Yeats S, McWilliam P, Zillig W (1982) A plasmid in the arachaebacterium Sulfolobus acidocaldarius. EMBO J 1:1035–1038

    Google Scholar 

  • Zillig W, Stetter KO, Tobien M (1978) DNA-dependent RNA polymerase from Halobacterium halobium Eur J Biochem 91:193–199

    Google Scholar 

  • Zillig W, Stetter KO, Schäfer W, Janekovic D, Wunderl S, Holz I, Palm P (1981a) Thermoproteales: A novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from Icelandic solfataras. Zbl Bakt Hyg, I. Abt Orig C 2:200–227

    Google Scholar 

  • Zillig W, Tu J, Holz I (1981b) Thermoproteales — a third order of thermoacidophilic archaebacteria. Nature 293:85–86

    Google Scholar 

  • Zillig W, Schnabel R, Tu J, Stetter KO (1982a) The phylogeny or archaebacteria including novel anaerobic thermoacidophiles in the light of RNA polymerase structure. Naturwissenschaften 69:197–204

    Google Scholar 

  • Zillig W, Stetter KO, Schnabel R, Madon J, Gierl A (1982b) Transcription in Archaebacteria. Zbl Bakt Hyg, I. Abt Orig C 3:218–227

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Böck

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janekovic, D., Wunderl, S., Holz, I. et al. TTV1, TTV2 and TTV3, a family of viruses of the extremely thermophilic, anaerobic, sulfur reducing archaebacterium Thermoproteus tenax . Molec Gen Genet 192, 39–45 (1983). https://doi.org/10.1007/BF00327644

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00327644

Keywords

Navigation