Skip to main content
Log in

Cloning and characterization of the nuclear gene encoding plastid glyceraldehyde-3-phosphate dehydrogenase from the marine red alga Gracilaria verrucosa

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The single-copy nuclear gene (GapA), encoding the plastid-localized glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of the marine red alga Gracilaria verrucosa, has been cloned and sequenced. The GapA transcriptional initiation site was located 49 bp upstream of the start codon, and a putative TATA box was found 54 bp farther upstream. A spliceosomal intron was identified in the transit-peptide-encoding region in a position very similar to intron 1 of GapA and GapB of higher plants; no introns occur in the region encoding the mature protein. These observations provisionally suggest that both red algae and higher plants descend from a single ancestral photosynthetic eukaryote, i.e. that a single endosymbiotic event gave rise to red algal and higher-plant plastids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bhattacharya D, Elwood HJ, Goff LJ, Sogin ML (1990) Phylogeny of Gracilaria lemaneiformis (Rhodophyta) based on sequence analysis of its small subunit ribosomal RNA coding region. J Phycol 26: 181–186

    Google Scholar 

  • Bird CJ, Murphy CA, Rice EL, Gutell RR, Ragan MA (1991) Towards an rRNA gene phylogeny of the red algae. J Phycol 27 [suppl]: 9

    Google Scholar 

  • Branlant C, Oster T, Branlant G (1989) Nucleotide sequence determination of the DNA region coding for Bacillus stearothermophilus glyceraldehyde-3-phosphate dehydrogenase and of the flanking DNA regions required for its expression in Escherichia coli. Gene 75: 145–155

    Google Scholar 

  • Branlant G, Branlant CH (1985) Nucleotide sequence of the Escherichia coli gap gene. Different evolutionary behavior of the NAD+-binding domain and of the catalytic domain of D-glyceraldehyde-3-phosphate dehydrogenase. Eur J Biochem 150: 61–66

    Google Scholar 

  • Brinkmann H, Martinez P, Quigley F, Martin W, Cerff R (1987) Endosymbiotic origin and codon bias of the nuclear gene for chloroplast glyceraldehyde-3-phosphate dehydrogenase from maize. J Mol Evol 26: 320–328

    Google Scholar 

  • Brinkmann H, Cerff R, Salomon M, Soll J (1989) Cloning and sequence analysis of cDNAs encoding the cytosolic precursors of subunits GapA and GapB of chloroplast glyceraldehyde-3-phosphate dehydrogenase from pea and spinach. Plant Mol Biol 13: 81–94

    Google Scholar 

  • Brown JWS, Feix G, Frendewey D (1986) Accurate in vitro splicing of two pre-mRNA plant introns in a HeLa cell nuclear extract. EMBO J 5: 2749–2758

    Google Scholar 

  • Cavalier-Smith T (1987) Intron phylogeny: a new hypothesis. Ann NY Acad Sci 503: 55–71

    Google Scholar 

  • Cerff R (1982) Separation and purification of NAD- and NADP-linked glyceraldehyde-3-phosphate dehydrogenases from higher plants. In: Edelmann M, Hallick RB, Chua N-H (eds) Methods in chloroplast molecular biology. Elsevier Biomedical, Amsterdam, pp 683–694

    Google Scholar 

  • Cerff R, Kloppstech K (1982) Structural diversity and differential light control of mRNAs coding for angiosperm glyceraldehyde-3-phosphate dehydrogenases. Proc Natl Acad Sci USA 79: 7624–7628

    Google Scholar 

  • Conway T, Sewell GW, Ingram LO (1987) Glyceraldehyde-3-phosphate dehydrogenase gene from Zymomonas mobilis: cloning, sequencing, and identification of promoter regions. J Bacteriol 169: 5653–5662

    Google Scholar 

  • Corden J, Wasylyk B, Buchwalder A, Sassone-Corsi P, Kedinger C, Chambon P (1980) Promoter sequences of eukaryotic proteincoding genes. Science 209: 1406–1414

    Google Scholar 

  • Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16: 10881–10890

    Google Scholar 

  • Craik CS, Rutter WJ, Fletterick R (1983) Splice junctions: association with variation in protein structure. Science 220: 1125–1129

    Google Scholar 

  • Crane PR, Donoghue MJ, Doyle JA, Friis EM (1989) Angiosperm origins. Nature 342: 131

    Google Scholar 

  • Dayhoff MO, Schwartz RM, Orcutt BC (1979) In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5, suppl 3. Natl Biomed Res Fdn, Silver Spring Md. pp 345–352

    Google Scholar 

  • Dibb NJ, Newman AJ (1989) Evidence that introns arose at protosplice sites. EMBO J 8: 2015–2021

    Google Scholar 

  • Doolittle RF (1987) Of URFs and ORFs. A primer on how to analyze derived amino-acid sequences. University Science Books, Mill Valley, California

    Google Scholar 

  • Doolittle RF, Feng DF, Anderson KL, Alberro MR (1990) A naturally occurring horizontal gene transfer from a eukaryote to a prokaryote. J Mol Evol 31: 383–388

    Google Scholar 

  • Douglas S (1993) Chloroplast origins and evolution. In: Bryant DA (ed) The molecular biology of the cyanobacteria. Kluwer, Dordrecht (in press)

    Google Scholar 

  • Douglas SE, Turner S (1991) Molecular evidence for the origin of plastids from a cyanobacterium-like ancestor. J Mol Evol 33: 267–273

    Google Scholar 

  • Douglas SE, Murphy CA, Spencer DF, Gray MW (1991) Cryptomonad algae are evolutionary chimaeras of two phylogeneticallydistinct unicellular eukaryotes. Nature 350: 148–151

    Google Scholar 

  • Dover G (1982) Molecular drive: a cohesive mode of species evolution. Nature 299: 111–116

    Google Scholar 

  • Duion B, Colleaux L, Jacquier A, Michel F, Monteilhet C (1986) Mitochondrial introns as mobile genetic elements: the role of intron-ncoded proteins. In: Wickner RB (ed) Extrachromosomal elements in lower eukaryotes. Plenum Press, New York, pp 5–27

    Google Scholar 

  • Dynan WS, Tjian R (1985) Control of eukaryotic messenger RNA synthesis by sequence-specific DNA-binding proteins. Nature 316: 774–778

    Google Scholar 

  • Felsenstein J (1989) PHYLIP — phylogeny inference package (version 3.2). Cladistics 5: 164–166

    Google Scholar 

  • Finchant GA (1992) Constraints acting on the exon positions of the splice-site sequences and local amino-acid composition of the protein. Hum Mol Genet 1: 259–267

    Google Scholar 

  • Gibbs SP (1978) The chloroplasts of Euglena may have evolved from symbiotic green algne. Can J Bot 56: 2883–2889

    Google Scholar 

  • Gil A, Proudfoot NJ (1987) Position-dependent sequence elements downstream of AAUAAA are required for efficient rabbit β-globin mRNA 3′ end formation. Cell 49: 399–406

    Google Scholar 

  • Gray MW (1992) The endosymbiont hypothesis revisited. Int Rev Cytol 141: 233–357

    Google Scholar 

  • Gray MW, Doolittle WF (1982) Has the endosymbiont hypothesis been proven. Microbiol Rev 46: 1–42

    Google Scholar 

  • Hahn S, Hoar ET, Gurennte L (1985) Each of three “TATA elements” specifies a subset of the transcription initiation sites at the CYC-1 promoter of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 82: 8562–8566

    Google Scholar 

  • Harris JI, Waters M (1976) Glyceraldehyde-3-phosphate dehydrogenase. In: Boyer PD (ed) The enzymes, 3rd edn, vol 13. Academic Press, New York, pp 1–49

    Google Scholar 

  • Heijne G von, Nishikawa K (1991) Chloroplast transit-peptides. The perfect random coil? FEBS Lett 278: 1–3

    Google Scholar 

  • Heijne G von, Steppuhn J, Herrmann RG (1989) Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem 180: 535–545

    Google Scholar 

  • Hendriks L, De Baere R, Van der Peer Y, Neefs J, Goris A, De Wachter R (1991) The evolutionary position of the rhodophyte Porphyra umbilicalis and the basidiomycete Leucosporidium scottii among other eukaryotes as deduced from complete sequences of small ribosomal subunit RNA. J Mol Evol 32: 167–177

    Google Scholar 

  • Higgins DG, Bleasby AJ, Fuchs R (1992) CLUSTAL V: improved software for multiple sequence alignment. CABIOS 8: 189–191

    Google Scholar 

  • Hultmark D, Klemenz R, Gehring WJ (1986) Translational and transcriptional control elements in the untranslated leader of the heatshock gene hsp22, Cell 44: 429–438

    Google Scholar 

  • Iwabe N, Kuma K, Hasegawa M, Osawa S, Miyata T (1989) Evolutionary relationship of archaebacteria, eubacteria and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc Natl Acad Sci USA 86: 9355–9359

    Google Scholar 

  • Keegstra K, Olsen LJ, Theg SM (1989) Chloroplastic precursors and their transport across the envelope membranes. Annu Rev Plant Physiol Plant Mol Biol 40: 471–501

    Google Scholar 

  • Lefort-Tran M (1981) The triple layered organization of the Euglena chloroplast envelope (significance and function). Ber Dt Bot Ges 94: 463–476

    Google Scholar 

  • Lewin RA, Cheng L (1989) Prochloron, a microbial enigma. Chapman and Hall, New York

    Google Scholar 

  • Li W-H, Gouy M, Wolfe KH, Sharp PM (1989) Angiosperm origins. Nature 342: 131–132

    Google Scholar 

  • Liaud M-F, Zhang DX, Cerff R (1990) Differential intron loss and endosymbiotic transfer of chloroplast glyceraldehyde-3-phosphate dehydrogenase genes to the nucleus. Proc Natl Acad Sci USA 87: 8918–8922

    Google Scholar 

  • Lockhart PJ, Howe CJ, Bryant DA, Beanland TJ, Larkum AWD (1992 a) Substitutional bias confounds inference of cyanelle origins from sequence data. J Mol Evol 34: 153–162

    Google Scholar 

  • Lockhart PJ, Penny D, Hendy MD, Howe CJ, Beanland TJ, Larkum AWD (1992 b) Controversy on chloroplast origins. FEBS Lett 301: 127–131

    Google Scholar 

  • Martin W, Cerff R (1986) Prokaryotic features of a nucleus-encoded enzyme. cDNA sequences for chloroplast and cytosolic glyceraldehyde-3-phosphate dehydrogenases from mustard (Sinapis alba). Eur J Biochem 159: 323–331

    Google Scholar 

  • Martin W, Gierl A, Saedler H (1989 a) Molecular evidence for pre-Cretaceous angiosperm origins. Nature 339: 46–48

    Google Scholar 

  • Martin W, Gierl A, Saedler H (1989 b) Angiosperm origins (reply to Crane et al. and to Li et al.). Nature 342: 132

    Google Scholar 

  • Martin W, Brinkmann H, Savona C, Cerff R (1993) Evidence for a chimeric nature of nuclear genomes: eubacterial origin of eukaryotic glyceraldehyde-3-phosphate dehydrogenase genes. Proc Natl Acad Sci USA 90: 8692–8696

    Google Scholar 

  • Martinez P, Martin W, Cerff R (1989) Structure, evolution and anaerobic regulation of a nuclear gene encoding cytosolic glyceraldehyde-3-phosphate dehydrogenase from maize. J Mol Biol 208: 551–565

    Google Scholar 

  • Mereschowsky C (1905) Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol Centralbl 25: 593–604, 689–691

    Google Scholar 

  • Mereschowsky C (1910) Theorie der zwei Plamaarten als Grundlage der Symbiogenesis, einer neuen Lehre von der Entstehung der Organismen. Biol Centralbl 30: 278–288, 289–303, 321–347, 354–367

    Google Scholar 

  • Morden CW, Delwiche CF, Kuhsel M, Palmer JD (1992) Gene phylogenies and the endosymbiotic origin of plastids. BioSystems 28: 75–90

    Google Scholar 

  • Nierzwicki-Bauer SA, Curtis SE, Haselkorn R (1984) Cotranscription of genes encoding the small and large subunits of ribulose-1,5-hisphosphate carboxylase in the cyanobacterium Anabaena 7120. Proc Natl Acad Sci USA 81: 5961–5965

    Google Scholar 

  • Palmer JD (1993) A genetic rainbow of plastids. Nature 364: 762–763

    Google Scholar 

  • Patthy L (1987) Intron-dependent evolution: preferred types of exons and introns. FEBS Lett 214: 1–7

    Google Scholar 

  • Quigley F, Martin WF, Cerff R (1988) Intron conservation across the prokaryote-eukaryote boundary: structure of the nuclear gene for chloroplast glyceraldehyde-3-phosphate dehydrogenase from maize. Proc Natl Acad Sci USA 85: 2672–2676

    Google Scholar 

  • Ragan MA, Lee AR III (1992) Making phylogenetic sense of biochemical and morphological diversity among the protists. In: Dudley EC (ed) The unity of evolutionary biology. Dioscorides Press, Portland vol I, pp 432–441

    Google Scholar 

  • Ragan MA, Bird CJ, Rice EL, Gutell RR, Murphy CA, Singh RK (1994) A molecular phylogeny of the marine red algae (Rhodophyta) based on the nuclear small-subunit rRNA gene. Proc Natl Acad Sci USA 91: in press.

  • Raven PH (1970) A multiple origin for plastids and mitochondria. Science 169: 641–646

    Google Scholar 

  • Reith M, Munholland J (1993) A high-resolution gene map of the chloroplast genome of the red alpa Porphyra purpurea. Plant Cell 5: 465–475

    Google Scholar 

  • Rogers J (1985) Exon shuffling and intron insertion in serine protease genes. Nature 315: 458–459

    Google Scholar 

  • Sagan L (1967) On the origin of mitosing cell. J Theor Biol 14: 225–274

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, vol 1. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Scherer S, Davis RW (1980) Recombination of dispersed repeated DNA sequences in yeast. Science 209: 1380–1384

    Google Scholar 

  • Schiff JA, Epstein HT (1965) The continuity of the chloroplast in Euglena. In: Locke M (ed) Reproduction: molecular, subcellular and cellular. Academic Press, New York, pp 131–189

    Google Scholar 

  • Schimper AFW (1883) Über die Entwickelung der Chlorophyllkörner und der Farbkörper. Bot Ztg 41: 105–114

    Google Scholar 

  • Shih M-C, Lazar G, Goodman HM (1986) Evidence in favor of the symbiotic origin of chloroplasts: primary structure and evolution of tobacco glyceraldehyde-3-phosphate dehydrogenases. Cell 47: 73–80

    Google Scholar 

  • Smith TL (1989) Disparate evolution of yeasts and filamentous fungi indicated by phylogenetic analysis of glyceraldehyde-3-phosphate dehydrogenase genes. Proc Natl Acad Sci USA 86: 7063–7066

    Google Scholar 

  • Taylor FJR (1974) Implications and extensions of the serial endosymbiosis theory for the origin of eukaryotes. Taxon 23: 229–258

    Google Scholar 

  • Wistow G (1993) Protein structure and introns. Nature 364: 107–108

    Google Scholar 

  • Zhou Y-H, Ragan MA (1993) cDNA cloning and characterization of the nuclear gene encoding chloroplast glyceraldehyde-3-phosphate dehydrogenase from the marine red alga Gracilaria verrucosa. Curr Genet 23: 483–489

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. W. Lee

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, YH., Ragan, M.A. Cloning and characterization of the nuclear gene encoding plastid glyceraldehyde-3-phosphate dehydrogenase from the marine red alga Gracilaria verrucosa . Curr Genet 26, 79–86 (1994). https://doi.org/10.1007/BF00326308

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00326308

Key words

Navigation