Skip to main content
Log in

The 49 K subunit of NADH: ubiquinone reductase (complex I) from Neurospora crassa mitochondria: primary structure of the gene and the protein

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

The primary structure of the 49 K subunit of the respiratory chain NADH:ubiquinone reductase (complex I) from Neurospora crassa was determined by sequencing cDNA, genomic DNA and the N-terminus of the mature protein. The sequence lengths correlate to a molecular mass of 54002 daltons for the preprotein and 49239 daltons for the mature protein. The presequence consists of 42 amino acids of typical composition for sequences which target nuclear-encoded proteins into mitochondria. The mature protein consists of 436 amino acids and shows 64% similarity to a 49 K subunit of bovine heart NADH:ubiquinone reductase and 33% to a predicted translation product of an open reading frame in the chloroplast DNAs of Marchantia polymorpha and Nicotiana tabacum. Evidence for an iron-sulfur cluster in the subunit is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson S, de Bruijn MHL, Coulson AR, Eperon IC, Sanger F, Young IG (1982) J Mol Biol 156:683–717

    Google Scholar 

  • Attardi G, Schatz G (1988) Annu Rev Cell Biol 4:289–333

    Google Scholar 

  • Ballance DJ (1986) Yeast 2:229–236

    Google Scholar 

  • Burger G, Werner S (1985) J Mol Biol 186:231–242

    Google Scholar 

  • Chomyn A, Mariottini P, Cleeter MWJ, Ragan CI, Matsuno-Yagi A, Hatefi Y, Doolittle RF, Attardi G (1985) Nature 314:592–597

    Google Scholar 

  • Chomyn A, Tsai Lai SSA (1989) Curr Genet 16:117–125

    Google Scholar 

  • Davis RW, Botstein D, Roth JR (1980) Advanced bacterial genetics: a manual for genetic engineering. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • de Vries H, Alzner-DeWeerd B, Breitenberger CA, Chang DD, de Jonge JC, RajBhandary UL (1986) EMBO J 5:779–785

    Google Scholar 

  • Feinberg AP, Vogelstein B (1983) Anal Biochem 132:6–13

    Google Scholar 

  • Fearnley IM, Runswick MJ, Walker JE (1989) EMBO J 8:665–672

    Google Scholar 

  • Friedrich T, Hofhaus G, Ise W, Nehls U, Schmitz B, Weiss H (1989) Eur J Biochem 180:173–180

    Google Scholar 

  • Frischauf AM, Lehrach H, Poustka A, Murray N (1983) J Mol Biol 170:827–842

    Google Scholar 

  • Harnisch U, Weiss H, Sebald W (1985) Eur J Biochem 149:95–99

    Google Scholar 

  • Hartl FU, Pfanner N, Nicholson DW, Neupert W (1989) Biochem Biophys Acta 988:1–45

    Google Scholar 

  • Hawlitschek G, Schneider H, Schmidt B, Tropschug M, Hartl FU, Neupert W (1988) Cell 53:795–806

    Google Scholar 

  • Huynh TV, Young RA, Davis RW (1985) In: Glover DM (ed) DNA cloning, vol 1: practical approach. IRL Press, Oxford, pp 49–78

    Google Scholar 

  • Ise W, Haiker H, Weiss H (1985) EMBO J 4:2075–2080

    Google Scholar 

  • Kreader CA, Heckman JE (1987) Nucleic Acids Res 15:9027–9042

    Google Scholar 

  • Leonard K, Haiker H, Weiss H (1987) J Mol Biol 194:277–286

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrok J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbour Laboratory. Cold Spring Harbor, New York

    Google Scholar 

  • Matzudaira P (1987) J Biol Chem 262:1035–1038

    Google Scholar 

  • Mead DA, Szczesna-Skorupa E, Kemper B (1986) Prot Engineering 1:67–74

    Google Scholar 

  • Michel R, Wachter E, Sebald W (1979) FEBS Lett 101:373–376

    Google Scholar 

  • Nelson MA, Macino G (1987) Mol Gen Genet 206:307–317

    Google Scholar 

  • Nishikimi M, Hosokawa Y, Toda H, Suzuki H, Ozawa T (1988) Biochem Biophys Res Commun 157:914–920

    Google Scholar 

  • Ohnishi M, Ragan CI, Hatefi Y (1985) J Biol Chem 260:2782–2788

    Google Scholar 

  • Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H (1986) Nature 322:571–574

    Google Scholar 

  • Pilkington S, Walker JE (1989) Biochemistry 28:3257–3264

    Google Scholar 

  • Rackwitz HR, Zehetner G, Frischauf AM, Lehrach H (1984) Gene 30:195–200

    Google Scholar 

  • Ragan CI (1987) Curr Top Bioenerget 15:1–36

    Google Scholar 

  • Römisch J, Tropschug M, Sebald W, Weiss H (1987) Eur J Biochem 164:111–115

    Google Scholar 

  • Runswick MJ, Gennis RB, Fearnley IM, Walker JE (1989) Biochemistry 28:9452–9459

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Schechtman MG, Yanovsky C (1983) J Mol Appl Genet 2:83–99

    Google Scholar 

  • Schulte U, Arretz M, Schneider H, Tropschug M, Wachter E, Neupert W, Weiss H (1989) Nature 339:147–149

    Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) EMBO J 5:2043–2049

    Google Scholar 

  • Specht CA, DiRusso CC, Novotny CP, Ullrich RC (1982) Anal Biochem 119:158–163

    Google Scholar 

  • Tuschen G, Sackmann U, Nehls U, Haiker H, Buse G, Weiss H (1990) J Mol Biol

  • Viebrock A, Perz A, Sebald W (1982) EMBO J 1:565–571

    Google Scholar 

  • Videira A, Tropschug M, Wachter E, Schneider H, Werner S (1990) J Biol Chem

  • Videira A, Tropschug M, Werner S (1990) Biochem Biophys Res Commun 166:280–285

    Google Scholar 

  • von Bahr-Lindström H, Galante YM, Persson M, Jornvall H (1983) Eur J Biochem 134:145–150

    Google Scholar 

  • von Heijne G (1986) EMBO J 5:1335–1342

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. Ciricay

Rights and permissions

Reprints and permissions

About this article

Cite this article

Preis, D., van der Pas, J.C., Nehls, U. et al. The 49 K subunit of NADH: ubiquinone reductase (complex I) from Neurospora crassa mitochondria: primary structure of the gene and the protein. Curr Genet 18, 59–64 (1990). https://doi.org/10.1007/BF00321116

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00321116

Key words

Navigation