Skip to main content
Log in

The hypothalamus of the human adult: chiasmatic region

  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

The human hypothalamus can be divided into a chiasmatic region, a tuberal region, and a mamillary region. The chiasmatic region comprises the magnocellular neurosecretory nuclei, several nuclei that are mainly formed of small nerve cells, and an ill-defined nerve cell assembly referred to as the chiasmatic gray. Small to medium-sized bipolar nerve cells predominate in the chiasmatic gray. With the use of Nissl preparations counterstained for demonstration of lipofuscin pigment, four types of neurons have been distinguished. Type I cells contain coarse and intensely stained lipofuscin granules. Type II cells are characterized by dense accumulations of small granules. Type III neurons harbour only a fine scattering of dust-like granules while type IV neurons are devoid of pigment. Pigmentoarchitectonic analysis of the chiasmatic region reveals the presence of eight nuclei embedded in or partially surrounded by the chiasmatic gray. The intermediate nucleus is a small compact accumulation of non-pigmented nerve cells located at the level of the optic chiasm half way between the paraventricular nucleus and the supraoptic nucleus. The periventricular nucleus and the uncinate nucleus are mainly formed of small pigment-laden type I and type II cells and appear as an anterior, respectively lateral extension of the paraventricular nucleus. Besides non-specific small cells, three neuronal types can be distinguished in the paraventricular nucleus on account of characteristic differences in their pigmentation. The supraoptic nucleus is formed of only two types of nerve cells. The cuneiform nucleus extends from the supraoptic nucleus to the ependymal lining of the third ventricle separating the suprachiasmatic nucleus from the retrochiasmatic nucleus. The suprachiasmatic nucleus contains the smallest neurons of the region. Cells of this nucleus are devoid of lipofuscin pigment. The retrochiasmatic nucleus is formed of a heterogeneous population of small and unusually large nerve cells. Numerous melanin-containing nerve cells and accumulations of nerve cells belonging to the lateral tuberal nucleus can be encountered within the boundaries of this nucleus as well. The technique and the data presented provide a basis for investigations of the aged and the diseased human brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Co.a :

anterior commissure

Fo :

fornix

an :

accessory neurosecretory nucleus

ch :

chiasmatic gray

chm :

chiasmatic gray, magnocellular region

chp :

chiasmatic gray, parvocellular region

cu :

cuneate nucleus

db :

nucleus of the diagonal band

dm :

drosomedial nucleus (tuberal region)

in :

intermediate nucleus

inf :

infundibular nucleus (tuberal region)

pe :

periventricular nucleus

pv :

paraventricular nucleus

rc :

retrochiasmatic nucleus

sc :

suprachiasmatic nucleus

sl :

lateral septal nucleus

sm :

medial septal nucleus

so :

supraoptic nucleus

st :

nucleus of the stria terminalis

un :

uncinate nucleus

tb :

lateral tuberal nucleus (retrochiasmatic portion)

vm :

ventromedial nucleus (tuberal region)

References

  • Almli CR (1984) Aging and hypothalamic regulation of metabolic, autonomic, and endocrine function. In: SW Scheff (ed) Aging and recovery of function in the central nervous system. Plenum Press, New York, pp 23–42

    Google Scholar 

  • Anderson RH, Fleming DE, Rhees RW, Kinghorn E (1986) Relationships between sexual activity, plasma testosterone, and the volume of the sexually dimorphic nucleus of the preoptic area in prenatally stressed and non-stressed rats. Brain Res 370:1–10

    Google Scholar 

  • Antunes JL, Zimmerman EA (1978) The hypothalamic magnocellular system of the rhesus monkey: An immunohistochemical study. J Comp Neurol 181:539–566

    Google Scholar 

  • Barden H, Barrett R (1973) The localization of catecholamine fluorescence to dog hypothalamic neuromelanin-bearing neurons. J Histochem Cytochem 21:175–183

    Google Scholar 

  • Bargmann W (1954) Das Zwischenhirn-Hypophysensystem. Springer, Berlin

    Google Scholar 

  • Bazelon M, Fenichel GM, Randall J (1967) Studies on neuromelanin. I. A melanin system in the human adult brainstem. Neurology 17:512–519

    Google Scholar 

  • Berube GR, Powers MM, Kerkay J, Clark G (1966) The gallocyanin-chrome alum stain: influence of methods of preparation on its activity and separation of active staining compound. Stain Technol 41:73–81

    Google Scholar 

  • Bleier R, Byne W, Siggelkow IR (1982) Cytoarchitectonic sexual dimorphisms of the medial preoptic and anterior hypothalamic areas in guinea pig, rat, hamster, and mouse. J Comp Neurol 212:118–130

    Google Scholar 

  • Bogerts B (1981) A brainstem atlas of catecholaminergic neurons in man, using melanin as a natural marker. J Comp Neurol 197:63–80

    Google Scholar 

  • Braak H (1978) On the pigmentarchitectonics of the human telencephalic cortex. In: MAB Brazier, H Petsche (eds) Architectonics of the cerebral cortex. Raven Press, New York, pp 137–157

    Google Scholar 

  • Braak H (1980) Architectonics of the human telencephalic cortex. In: V Braitenberg, HB Barlow, E Bizzi, E Florey, OJ Grüsser, H van der Loos (eds) Studies of brain function (vol 4). Springer, Berlin Heidelberg New York, pp 1–147

    Google Scholar 

  • Braak H (1983) Transparent Golgi impregnations. A way to examine both details of cellular processes and components of the nerve cell body. Stain Technol 58:91–95

    Google Scholar 

  • Braak H (1984) Architectonics as seen by lipofuscin stains. In: A Peters, EG Jones (eds) Cerebral cortex (vol 1): Cellular organization of the cerebral cortex. Plenum Press, New York, pp 59–104

    Google Scholar 

  • Brockhaus H (1942) Beitrag zur normalen Anatomie des Hypothalamus und der Zona incerta beim Menschen. J Psychol Neurol 51:96–196

    Google Scholar 

  • Clark WE LeGros (1936) The topography and homologies of the hypothalamic nuclei in man. J Anat 70:203–214

    Google Scholar 

  • Crosby EC, Showers MJC (1969) Comparative anatomy of the preoptic and hypothalamic areas. In: W Haymayker, E Anderson, WJH Nauta (eds) The hypothalamus. Thomas, Springfield, pp 61–135

    Google Scholar 

  • Daniel PM, Prichard MML (1975) Studies of the hypothalamus and the pituitary gland. Acta endocrinol (Kbh) 80 (Suppl 201):1–216

    Google Scholar 

  • Defendini R, Zimmerman EH (1978) The magnocellular neurosecretory system of the mammalian hypothalamus. In: S Reichlin, RJ Baldessarini, JB Martin (eds) The hypothalamus. Raven Press, New York, pp 137–152

    Google Scholar 

  • Dierickx K, Vandesande F (1977) Immunocytochemical localization of the vasopressinergic and oxytocinergic neurons in the human hypothalamus. Cell Tissue Res 184:15–27

    Google Scholar 

  • Dierickx K, Vandesande F (1979) Immunocytochemical demonstration of separate vasopressin-neurophysin and oxytocin-neurophysin neurons in the human hypothalamus. Cell Tissue Res 196:203–212

    Google Scholar 

  • Diepen R (1962) Der Hypothalamus. In: W Bargmann (ed) Handbuch der mirkoskopischen Anatomie des Menschen (vol IV/7). Springer, Berlin Heidelberg, pp 1–525

    Google Scholar 

  • Felten DL (1976) Catecholamine neurons in squirred monkey hypothalamus. J Neural Transm 39:269–280

    Google Scholar 

  • Feremutsch K (1948) Die Variabilität der cytoarchitektonischen Struktur des menschlichen Hypothalamus. 1. Mitteilung: Die orale Kerngruppe, die Tuberkerne, das Corpus mamillare. Monatschr Psychiatr Neurol 116:257–283

    Google Scholar 

  • Feremutsch K (1951) Die Variabilität der cytoarchitektonischen Struktur des menschlichen Hypothalamus. 2. Mitteilung: Das Grundgrau. Monatschr Psychiatr Neurol 121:87–113

    Google Scholar 

  • Feremutsch K (1955) Strukturanalyse des menschlichen Hypothalamus. Monatschr Psychiatr Neurol 130:1–85

    Google Scholar 

  • Fujii M (1982) Cyto- and myeloarchitectural studies on the lateral tuberal nucleus in the Simian Callithricidae and Prosimiae. Acta Anat 114:155–164

    Google Scholar 

  • Gagel O (1928) Zur Topik und feineren Histologie der vegetativen Kerne des Zwischenhirns. Z Anat Entw Gesch 87:558–584

    Google Scholar 

  • Gorski RA, Gordon JH, Shryne JE, Southam AM (1978) Evidence for a morphological sex difference within the medial preoptic area of the rat brain. Brain Res 148:333–346

    Google Scholar 

  • Gorski RA, Harlan RE, Jacobson CD, Shryne JE, Southam AM (1980) Evidence for the existence of a sexually dimorphic nucleus in the preoptic area of the rat. J Comp Neurol 193:529–539

    Google Scholar 

  • Greenough WT, Carter CS, Steerman C, DeVoogd TJ (1977) Sex differences in dendritic patterns in hamster preoptic area. Brain Res 126:63–72

    Google Scholar 

  • Greving R (1925) Beiträge zur Anatomie des Zwischenhirns und seiner Funktion. I. Der anatomische Aufbau der Zwischenhirn-basis und des anschließenden Mittelhirngebietes beim Menschen. Z Anat Entw Gesch 75:597–620

    Google Scholar 

  • Grünthal E (1930) Vergleichend anatomisch und entwicklungsgeschichtliche Untersuchungen über die Zentren des Hypothalamus der Säuger und des Menschen. Arch Psychiatr Nervenkr 90:216–267

    Google Scholar 

  • Grünthal E (1933) Über das spezifisch Menschliche im Hypothalamusbau. Eine vergleichende Untersuchung des Hypothalamus beim Schimpansen und Menschen. J Psychol Neurol 45:237–263

    Google Scholar 

  • Gurdjian ES (1927) The diencephalon of the albino rat. J Comp Neurol 43:1–114

    Google Scholar 

  • Hartwig HG, Wahren W (1982) Anatomy of the hypothalamus. In: G Schaltenbrand, AE Walker (eds) Stereotaxy of the human brain, 2nd edn. Thieme, Stuttgart New York, pp 87–106

    Google Scholar 

  • Ibuka N, Kawamura H (1975) Loss of circadian rhythm in sleep-wakefulness cycle in the rat by suprachiasmatic nucleus lesions. Brain Res 96:76–81

    Google Scholar 

  • Joseph SA, Knigge KM (1978) The endocrine hypothalamus: Recent anatomical studies. In: S Reichlin, RJ Baldessarini, JB Martin (eds) The hypothalamus. Raven Press, New York, pp 15–40

    Google Scholar 

  • Kawata M, Sano Y (1982) Immunohistochemical identification of the oxytocin and vasopressin neurons in the hypothalamus of the monkey (Macaca fuscata). Anat Embryol 165:151–167

    Google Scholar 

  • Kuhlenbeck H, Haymaker W (1949) The derivatives of the hypothalamus in the human brain; their relation to extrapyramidal and autonomic systems. Milit Surgeon 105:26–52

    Google Scholar 

  • Lang L (1985) Surgical anatomy of the hypothalamus. Acta Neurochir 75:5–22

    Google Scholar 

  • Laruelle ML (1934) Le système végétatif méso-diencéphalique. Rev Neurol 1:809–842

    Google Scholar 

  • Lydic R, Schoene WC, Czeisler CA, Moore-Ede MC (1980) Suprachiasmatic region of the human hypothalamus: Homolog to the primate circadian pacemaker? Sleep 2:355–361

    Google Scholar 

  • Lydic R, Albers HE, Tepper B, Moore-Ede MC (1982) Three-dimensional structure of the mammalian suprachiasmatic nuclei: A comparative study of five species. J Comp Neurol 204:225–237

    Google Scholar 

  • Malone E (1910) Über die Kerne des menschlichen Diencephalon. Abh Königl preuss Akad Wiss, Berlin (physik math Klasse):1–32

  • Mann DMA, Yates PO, Marcyniuk B (1985) Changes in Alzheimer's disease in the magnocellular neurons of the supraoptic and paraventricular nuclei of the hypothalamus and their relationship to the noradrenergic deficit. Clin Neuropathol 4:127–134

    Google Scholar 

  • Marshall PN, Horobin RW (1972) The chemical nature of the gallocyanin-chrome alum staining complex. Stain Technol 47:155–161

    Google Scholar 

  • Matzuk MM, Saper CB (1985) Preservation of hypothalamic dopaminergic neurons in Parkinson's disease. Ann Neurol 18:552–555

    Google Scholar 

  • Moore RY (1979) The anatomy of central neural mechanisms regulating endocrine rythms. In: DT Krieger (ed) Endocrine Rythms. Raven Press, New York, pp 63–87

    Google Scholar 

  • Moore RY (1982) The suprachiasmatic nucleus and the organization of a circadian system. Trends Neurosci 5:404–407

    Google Scholar 

  • Morgane PJ (1980) Historical and modern concepts of hypothalamic organization and function. In: PJ Morgane, J Panksepp (eds) Handbook of the hypothalamus, Vol 1: Anatomy of the hypothalamus. Dekker, New York Basel, pp 1–64

    Google Scholar 

  • Morton A (1969) A quantitative analysis of the normal neuron population of the hypothalamic magnocellular nuclei in man and of their projection to the neurohypophysis. J Comp Neurol 136:143–158

    Google Scholar 

  • Nauta WJH, Haymaker W (1969) Hypothalamic nuclei and fiber connections. In: Haymaker, E Anderson, WJH Nauta (eds) The hypothalamus. Thomas, Springfield, pp 136–209

    Google Scholar 

  • Orthner H (1982) Sexual disorders. In: G Schaltenbrand, AE Walker (eds) Textbook of stereotaxy of the human brain. Thieme, Stuttgart New York, pp 600–616

    Google Scholar 

  • Pickard GE, Turek FW (1983) The suprachiasmatic nuclei: Two circadian clocks? Brain Res 268:201–210

    Google Scholar 

  • Plum F, Uitert R van (1978) Nonendocrine diseases and disorders of the hypothalamus. In: S Reichlin, RJ Baldessarini, JB Martin (eds) The hypothalamus. Raven Press, New York, pp 415–473

    Google Scholar 

  • Powers MM, Clark G (1963) A note on Darrow Red. Stain Technol 38:289–290

    Google Scholar 

  • Powers MM, Clark G, Darrow MA, Emmel VM (1960) Darrow red, a new basic dye. Stain Technol 35:19–21

    Google Scholar 

  • Reichlin S (1985) The hypothalamus in human disease: Achievements and challenges. Acta Neurochir 75:3–4

    Google Scholar 

  • Sadun AA, Schaechter JD, Smith LEH (1984) A retinohypothalamic pathway in man, light mediation of circadian rhythms. Brain Res 302:371–377

    Google Scholar 

  • Saper CB, Petito CK (1982) Correspondence of melanin-pigmented neurons in human brain with A1–A14 catecholamine cell groups. Brain 105:87–102

    Google Scholar 

  • Sofroniew MV, Weindl A (1980) Identification of parvocellular vasopressin and neurophysin neurons in the suprachiasmatic nucleus of a variety of mammals including primates. J Comp Neurol 193:659–675

    Google Scholar 

  • Spencer S, Saper CB, Joh T, ReisDJ, Goldstein M, Raese JD (1985) Distribution of catecholamine-containing neurons in the normal human hypothalamus. Brain Res 328:73–80

    Google Scholar 

  • Spiegel EA, Zweig H (1919) Zur Cytoarchitektonik des Tuber cinereum. Arb Neurol Inst Univ Wien 22:278–295

    Google Scholar 

  • Stopa EG, King JC, Lydic R, Schoene WC (1984) human brain contains vasopressin and vasoactive intestinal polypeptide neuronal subpopulations in the suprachiasmatic region. Brain Res 297:159–163

    Google Scholar 

  • Strenge H (1975) Über den Nucleus tuberis lateralis im Gehirn des Menschen. Eine pigmentarchitektonische Studie. Z Mikrosk Anat Forsch 89:1043–1067

    Google Scholar 

  • Swaab DF, Fliers E (1985) A sexually dimorphic nucleus in the human brain. Science 228:1112–1115

    Google Scholar 

  • Swaab DF, Hofman MA (1985) Sexual differentiation of the human brain. A historical perspective. Prog Brain Res 61:361–374

    Google Scholar 

  • Swaab DF, Fliers E, Partiman TS (1985) The suprachiasmatic nucleus of the human brain in relation to sex, age, and senile dementia. Brain Res 342:37–44

    Google Scholar 

  • Swanson LW, Sawchenko PE (1983) Hypothalamic integration: Organization of the paraventricular and supraoptic nuclei. Ann Rev Neurosci 6:269–324

    Google Scholar 

  • Tobet SA, Zahniser DJ, Baum MJ (1986) Sexual dimorphism in the preoptic/anterior hypothalamic area of ferrets: Effects of adult exposure to sex steroids. Brain Res 364:249–257

    Google Scholar 

  • van den Pol AN (1986) Gamma-aminobutyrate, gastrin releasing peptide, serotonin, somatostatin, and vasopressin: Ultrastructural immunocytochemical localization in presynaptic axons in the suprachiasmatic nucleus. Neurosci 17:643–659

    Google Scholar 

  • van den Pol AN, Powley T (1979) A fine-grained anatomical analysis of the role of the rat suprachiasmatic nucleus in circadian rythms of feeding and drinking. Brain Res 160:307–326

    Google Scholar 

  • van den Pol AN, Tsujimoto K (1985) Neurotransmitters of the hypothalamic suprachiasmatic nucleus. Immunocytochemical analysis of 25 neuronal antigens. Neurosci 15:1049–1086

    Google Scholar 

  • Wahren W (1959) Anatomie des Hypothalamus. In: G Schaltenbrand, P bailey (eds) Einführung in die stereotaktischen Operationen mit einem Atlas des menschlichen Gehrins (vol 1). Thieme, Stuttgart, pp 119–151

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braak, H., Braak, E. The hypothalamus of the human adult: chiasmatic region. Anat Embryol 175, 315–330 (1987). https://doi.org/10.1007/BF00309845

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00309845

Key words

Navigation