Skip to main content
Log in

Colony level and within colony level selection in honeybees

A two allele population model for Apis mellifera capensis

  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Summary

Although honeybee workers are usually infertile, in queenless colonies some workers can develop ovaries and produce offspring. Therefore the classical Darwinian fitness of workers is not zero. Experimental studies in the Cape honey bee (Apis mellifera capensis) reveal a huge genetic variation for individual fitness of workers. The present study with a one locus, two allele model for reproductive dominance of workers shows that a balanced system between colony level and individual within colony selection plausibly explains the phenomenon of a high genetic variance of worker fitness. In particular, a frequent occurrence of queenless colonies in the population leads to stable polymorphic equilibria. Also the multiple mating system of the honey bee queen supports the propagation of alleles causing reproductive dominance of workers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams J, Rothman ED, Kerr WE, Paulino ZL (1977) Estimation of the number of sex alleles and queen matings from diploid male frequencies in a population of Apis mellifera. Genetics 86:583–596

    Google Scholar 

  • Boorman SA, Levitt PR (1980) The Genetic of Altruism. Academic Press, New York, NY

    Google Scholar 

  • Bulmer M (1980) The Mathemetical Theory of Quantitative Genetics. Clarendon Press, Oxford, UK

    Google Scholar 

  • Cavalli-Sforza LL, Feldman MW (1978) Darwinian selection and “altruism”. Theor Pop Biol 14:268–280

    Google Scholar 

  • Craig R (1979) Parental manipulation, kin selection and the evolution of altruism. Evolution 33:319–334

    Google Scholar 

  • Craig R (1983) Familial selection and the evolution of social behaviour re-examined. J Theor Biol 103:287–294

    Google Scholar 

  • Crewe RM (1982) Compositional variability: the key to the social signals produced by honeybee mandibular glands. In: Breed MD, Michener CD, Evans HE (eds) The Biology of Social Insects. Westview Press, Boulder, CO, pp 318–322

    Google Scholar 

  • Crewe RM, Velthuis HHW (1980) False queens: a consequence of mandibular gland signals in worker honeybees. Naturwissenschaften 67:467

    Google Scholar 

  • Darwin C (1859) The Origin of Species. Murray, London, UK

    Google Scholar 

  • Ewing E (1979) Genetic variation in heterogenous environment VII. Temporal and spatial heterogeneity in infinite populations. Am Nat 114:197–212

    Google Scholar 

  • Falconer DS (1981) Introduction to Quantitative Genetics. 2nd Edition, Longman, New York, NY

    Google Scholar 

  • Falconer DS (1989) Introduction to Quantitative Genetics, 3rd Edition, Longman, New York, NY

    Google Scholar 

  • Felsenstein J (1976) The theoretical population genetics of variable selection and migration. Ann Rev Genet 10:253–280

    Google Scholar 

  • Fisher RA (1930) The Genetical Theory of Natural Selection. Clarendon Press, Oxford, UK

    Google Scholar 

  • Haldane JBS (1932) The Causes of Evolution. Longmans, Green and Co., London, UK

    Google Scholar 

  • Hamilton WD (1964a) The genetical evolution of social behavior. I. J Theor Biol 7:1–16

    Google Scholar 

  • Hamilton WD (1964b) The genetical evolution of social behavior II. J Theor Biol 7:17–52

    Google Scholar 

  • Hemmling C, Koeniger N, Ruttner F, (1979) Quantitative Bestimmung der 9-Oxodecensäure im Lebenszyklus der Kapbiene (Apis mellifera capensis Escholtz). Apidologie 10:227–240

    Google Scholar 

  • Hillesheim E (1987) Does worker dominance reduce group fitness of honeybees (Apis mellifera capensis Escholtz)? In: Eder J, Rembold H (eds) Chemistry and Biology of Social Insects, Peperny, Munich, FRG, pp 360–361

    Google Scholar 

  • Hillesheim E, Koeniger N, Moritz RFA (1989) Colony performance in honeybees (Apis mellifera capensis Esch.) depends on the ratio of subordinate and dominant workers. Behav Ecol Sociobiol 24:291–296

    Google Scholar 

  • Laidlaw HH, Page RE (1984) Polyandry in honeybees (Apis mellifera capensis L.): sperm utilization and intracolony relationship. Genetics 108:985–997

    Google Scholar 

  • Lande R (1976) The maintenance of genetic variability by mutation in a polygenic character with linked loci. Genet Res 26:221–234

    Google Scholar 

  • Levitt PR (1975) General kin selection models for genetic evolution of sib altruism in diploid and haplodiploid species. Proc Natl Acad Sci USA 72:4531–4535

    Google Scholar 

  • Lin N, Michener CD (1972) Evolution of sociality in insects. Q Rev Biol 47:35–57

    Google Scholar 

  • Michod RE (1982) The theory of kin selection. Annu Rev Ecol Syst 13:23–55

    Google Scholar 

  • Moritz RFA (1986a) Intracolonial worker relationship and sperm competition in the honeybee (Apis mellifera L.). Experientia 42:445–448

    Google Scholar 

  • Moritz RFA (1986b) Two parthenogenetical strategies of laying workers in populations of the honeybee, Apis mellifera (Hymenoptera: Apidae). Entomol Gener 11:159–164

    Google Scholar 

  • Moritz RFA, Hillesheim E (1985) Inheritance of dominance in honeybees (Apis mellifera capensis Esch.). Behav Ecol Sociobiol 17:87–89

    Google Scholar 

  • Moritz RFA, Kauhausen D (1984) Hybridization between Apis mellifera capensis and adjacent races of Apis mellifera. Apidologie 15:211–222

    Google Scholar 

  • Mousseau TA, Roff DA (1987) Natural selection and the heritability of fitness components. Heredity 59:181–197

    Google Scholar 

  • Noordwijk AJ van (1984a) Quantitative genetics in natural populations of birds illustrated with examples from the great tit, Parus major. In: Wöhrmann K, Löschke V (eds) Population Biology and Evolution, Springer Verlag, Heidelberg, FRG, pp 67–79

    Google Scholar 

  • Noordwijk AJ van (1984b) Problems in the analysis of dispersal and a critique on its ‘heritability’ in the Great tit. J Anim Ecol 53:533–544

    Google Scholar 

  • Noordwijk AJ van, Balen JH van, Scharloo W (1980) Heritability of ecological important traits in the great tit. Ardea 68:193–203

    Google Scholar 

  • Noordwijk AJ van, Balen JH van, Scharloo W (1981) Genetic and environmental variation in clutch size of the great tit (Parus major). Neth J Zool 31:342–372

    Google Scholar 

  • Oster ARG, Wilson EO (1978) Caste and Ecology in the Social Insects. Princeton Univ. Press, Princeton, New Jersey

    Google Scholar 

  • Owen RE (1986) Colony-level selection in the social insects: Single locus additive and nonadditive models. Theor Popul Biol 29:198–234

    Google Scholar 

  • Page RE, Erickson EH (1988) Reproduction by worker honey bees (Apis mellifera L.). Behav Ecol Sociobiol 23:117–126

    Google Scholar 

  • Ruttner F (1988) Biogeography and Taxonomy of Honeybees. Springer, Berlin, FRG

    Google Scholar 

  • Ruttner F, Hesse B (1981) Rassenspezifische Unterschiede in der Ovarentwicklung und Eiablage von weisellosen Arbeiterinnen. Apidologie 12:159–183

    Google Scholar 

  • Tiesler FK (1972) Die Inselbelegstellen aus dem Norden der BRD. In: Ruttner H, Harnaj V (eds) Paarungskontrolle und Selcktion bei der Honigbiene. Apimondia Publishing House, Bucharest, Rumania, pp 52–56

    Google Scholar 

  • Tribe J (1983) What is the Cape bee? S Afr Bee J 55:77–87

    Google Scholar 

  • Turelli M (1984) heritable genetic variation via mutation selection balance: Lerch's zera meets the abdominal bristle. Theor Popul Theory 25:138–193

    Google Scholar 

  • Uyenoyama M, Feldman MW (1980) Theories of kin and group selection: A population genetics perspective. Theor Popul 17:380–414

    Google Scholar 

  • Verma S, Ruttner F (1980) Cytological analysis of the thelytokous parthenogenesis in the cape honeybee (Apis mellifera capensis Esch.). Apidologie 14:41–57

    Google Scholar 

  • Visscher PK (1986) Kinship discrimination in queen rearing by honey bees (Apis mellifera). Behav Ecol Sociobiol 18:453–460

    Google Scholar 

  • Wade MJ (1979) The evolution of social interactions by family selection. Am Nat 113:399–417

    Google Scholar 

  • Wilson DS (1975) A theory of group selection. Proc Natl Acad Sci USA 72:143–146

    Google Scholar 

  • Wilson EO (1971) The Insect Societies. Harvard University Press, Cambridge, Massachusetts

    Google Scholar 

  • Woyke J (1975) Natural and instrumental insemination of Apis cerana indica in India. J Apic Res 14:153–159

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moritz, R.F.A. Colony level and within colony level selection in honeybees. Behav Ecol Sociobiol 25, 437–444 (1989). https://doi.org/10.1007/BF00300190

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00300190

Keywords

Navigation