Skip to main content
Log in

Human oncogenes

  • Review Articles
  • Published:
Human Genetics Aims and scope Submit manuscript

Summary

The information published on human oncogenes up to the fall of 1983 is reviewed. Retroviral oncogenes, protooncogenes, and cellular transforming genes are compared. Transforming genes derived from the ras gene family are described in detail. The different mechanisms of activation of proto-oncogenes are summarized. Finally, the concerted or sequential action of cellular transforming genes in the multistep process of carcinogenesis is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aaronson SA (1983) Unique aspects of the interactions of retroviruses with vertebrate cells: CP Rhoads Memorial Lecture. Cancer Res 43:1–5

    Google Scholar 

  • Alitalo K, Schwab M, Lin CC, Varmus HE, Bishop JM (1983) Homogeneously staining chromosomal regions contain amplified copies of an abundantly expressed cellular oncogene (c-onc) in malignant neuroendocrine cells from a human colon carcinoma. Proc Natl Acad Sci USA 80:1707–1711

    Google Scholar 

  • Becker D, Lane MA, Cooper GM (1982) Identification of an antigen associated with transforming genes of human and mouse mammary carcinomas. Proc Natl Acad Sci USA 79:3315–3319

    Google Scholar 

  • Bishop JM (1982) Retroviruses and cancer genes. Adv Cancer Res 37:1–32

    Google Scholar 

  • Bishop JM (1983) Cellular oncogenes and retroviruses. Ann Rev Biochem 52:301–354

    Google Scholar 

  • Blair DG, McClements WL, Oskarsson MK, Fischinger PJ, Vande Woude GF (1980) Biological activity of cloned Moloney sarcoma virus DNA: Terminally redundant sequences may enhance transformation efficiency. Proc Natl Acad Sci USA 77:3504–3508

    Google Scholar 

  • Blair DG, Oskarsson M, Wood TG, McClements WL, Fischinger PJ, Vande Woude GF (1981) Activation of transforming potential of a normal cell sequence: a molecular model for oncogenesis. Science 212:941–943

    Google Scholar 

  • Cairns J, Logan J (1983) Step by step into carcinogenesis. Nature 304:582–583

    Google Scholar 

  • Capon DJ, Chen EY, Levinson AD, Seeburg PH, Goeddel DV (1983a) Complete nucleotide sequences of the T24 human bladder carcinoma oncogene and its normal homologue. Nature 302:33–37

    Google Scholar 

  • Capon DJ, Seeburg PH, McGrath JP, Hayflick JS, Edman U, Levinson AD, Goeddel DV (1983b) Activation of Ki-ras2 gene in human colon and lung carcinomas by two different point mutations. Nature 304:507–513

    Google Scholar 

  • Carney DN, Edgell CJ, Gazdar AF, Minna JD (1979) Suppression of malignancy in human lung cancer (A549/8) x mouse fibroblast (3T3-4E) somatic cell hybrids. J Natl Cancer Inst 62:411–416

    Google Scholar 

  • Chang EH, Ellis RW, Scolnick EM, Lowy DR (1980) Transformation by cloned Harvey murine sarcoma virus DNA: efficiency increased by long terminal repeat DNA. Science 210:1249–1251

    Google Scholar 

  • Chang EH, Gonda MA, Ellis RW, Scolnick EM, Lowy DR (1982a) Human genome contains four genes homologous to transforming genes of Harvey and Kirsten murine sarcoma viruses. Proc Natl Acad Sci USA 79:4848–4852

    Google Scholar 

  • Chang EH, Furth ME, Scolnick EM, Lowy DR (1982b) Tumorigenic transformation of mammalian cells induced by a normal human gene homologous to the oncogene of Harvey murine sarcoma virus. Nature 297:479–483

    Google Scholar 

  • Collins S, Groudine M (1982) Amplification of endogenous mycrelated DNA sequences in a human myeloid leukemia cell line. Nature 298:679–681

    Google Scholar 

  • Collins SJ, Groudine M (1983) Rearrangement and amplification of c-abl sequences in the human chronic myelogenous leukemia cell line K-562. Proc Natl Acad Sci USA 80:4813–4817

    Google Scholar 

  • Cooper GM, Okenquist S, Silverman L (1980) Transforming activity of DNA of chemically transformed and normal cells. Nature 284:418–421

    Google Scholar 

  • Cooper GM (1982) Cellular transforming genes. Science 218:801–806

    Google Scholar 

  • Cooper JA, Reiss NA, Schwartz RJ, Hunter T (1983) Three glycolytic enzymes are phosphorylated at tyrosine in cells transformed by Rous sarcoma virus. Nature 302:218–223

    Google Scholar 

  • Dalla-Favera RD, Gellmann EP, Martinotti S, Franchini G, Papas TK, Gallo RC, Wong-Staal F (1982a) Cloning and characterization of different human sequences related to the onc gene (v-myc) of avian myelocytomatosis virus (MC29). Proc Natl Acad Sci USA 79:6497–6501

    Google Scholar 

  • Dalla-Favera RD, Wong-Staal F, Gallo RC (1982b) Onc gene amplification in promyelocytic leukemia cell line HL-60 and primary leukemia cells of the same patient. Nature 299:61–63

    Google Scholar 

  • De Klein A, Van Wessel AD, Grossveld G, Bartram CR, Hagemeyer A, Bootsma B, Spurr NK, Heisterkamp N, Groffen J, Stephenson JR (1982) A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukemia. Nature 300:765–767

    Google Scholar 

  • Der DJ, Krontiris TG, Cooper GM (1982) Transforming genes of human bladder and lung carcinoma cell lines are homologous to the ras gene of Harvey and Kirsten sarcoma virus. Proc Natl Acad Sci USA 79:3637–3640

    Google Scholar 

  • Diamond A, Cooper GM, Ritz J, Lane MA (1983) Identification and molecular cloning of the human Blym transforming gene activated in Burkitt lymphomas. Nature 305:112–116

    Google Scholar 

  • Doolittle RF, Hunkapiller MW, Hood LE, Deware SG, Robbins KC, Aaronson SA, Antoniades HN (1983) Simian sarcoma virus onc gene v-sis is derived from the gene (or genes) encoding a plateletderived growth factor. Science 221:275–276

    Google Scholar 

  • Duesberg PH (1983) Retroviral transforming genes in normal cells? Nature 304:219–226

    Google Scholar 

  • Eva A, Aaronson SA (1983a) Frequent activation of c-kis as a transforming gene in fibrosarcomas induced by methylcholantrene. Science 220:995–996

    Google Scholar 

  • Eva A, Tronick SR, Gol RA, Pierce JH, Aaronson SA (1983b) Transforming genes of human hematopoietic tumors: frequent detection of ras-related oncogenes whose activation appears to be independent of tumor phenotype. Proc Natl Acad Sci USA 80: 4926–4930

    Google Scholar 

  • Feinberg AP, Vogelstein B, Droller MJ, Baylin SB, Nelkin BD (1983) Mutation affecting the 12th amino and of the c-Ha-ras oncogene product occurs infrequently in human cancer. Science 220: 1175–1177

    Google Scholar 

  • Fung YKT, Lewis WG, Crittenden LB, Kung HJ (1983) Activation of the cellular oncogene c-erbB by LTR insertion: molecular basis for induction of erythroblastosis by avian leukosis virus. Cell 33:357–368

    Google Scholar 

  • Gay NJ, Walker JE (1983) Homology between human bladder carcinoma oncogene product and mitochondrial ATPase. Nature 301:262–264

    Google Scholar 

  • Gelmann EP, Clanton DJ, Jariwalla RJ, Rosenthal LJ (1983) Characterization and location of myc homologous sequences in human cytomegalovirus DNA. Proc Natl Acad Sci USA 80:5107–5111

    Google Scholar 

  • Gilbert F (1983) Chromosomal aberrations and oncogenes. Nature 303:475

    Google Scholar 

  • Goldfarb M, Shimizu K, Perucho M, Wigler M (1982) Isolation and preliminary characterization of a human transforming gene from T24 bladder carcinoma cells. Nature 296:404–409

    Google Scholar 

  • Goubrin G, Goldman D, Nice J, Neuman PE, Cooper GM (1983) Molecular cloning and nucleotide sequence of a transforming gene detected by transfection of chicken B-cell lymphoma DNA. Nature 302:314–319

    Google Scholar 

  • Hall A, Marshall C, Spurr N, Weiss RA (1983) Identification of transforming genes in two human sarcoma cell lines as a new member of the ras gene family located on chromosome 1. Nature 303:396–400

    Google Scholar 

  • Hayward WS, Neel BG, Astrin SM (1981) Activation of a cellular onc gene by promoter insertion in ALV induced lymphoid leukosis. Nature 290:475–480

    Google Scholar 

  • Klein G (1981) The role of gene dosage and genetic transpositions in carcinogenesis. Nature 294:313–318

    Google Scholar 

  • Klein G (1983) Specific chromosomal translocations and the genesis of B-cell derived tumors in mice and men. Cell 32:311–315

    Google Scholar 

  • Khoury G, Gruss P (1983) Enhancer elements. Cell 33:313–314

    Google Scholar 

  • Land H, Parada LF, Weinberg RA (1983) Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304:596–602

    Google Scholar 

  • Lane MA, Sainten A, Cooper GM (1982a) Stage specific transforming genes of human and mouse B and T lymphocyte neoplasms. Cell 28:873–880

    Google Scholar 

  • Lane MA, Sainten A, Cooper GM (1982b) Activation of related transforming genes in mouse and human mammary carcinomas. Proc Natl Acad Sci USA 78:5185–5189

    Google Scholar 

  • McCoy M, Toole JT, Cunningham JM, Chang EH, Lowy DR, Weinberg RA (1983) Characterization of a human colon/lung carcinoma oncogene. Nature 302:79–81

    Google Scholar 

  • McGrath JP, Capon DJ, Smith D, Chen EY, Seeburg PH, Goeddel DV, Levinson AD (1983) Structure and organization of the human Ki-ras proto-oncogene and a related processed pseudogene. Nature 304:501–506

    Google Scholar 

  • Müller R, Salmon DJ, Tremblay JM, Cline MJ, Verma IM (1982) Differential expression of cellular oncogenes during pre-and postnatal development of the mouse. Nature 299:640–644

    Google Scholar 

  • Müller R (1983a) Differential expression of cellular oncogenes during murine development and in teratocarcinoma cell lines. Cold Spring Harbor Conf Cell proliferation, vol 10 (in press)

  • Müller R, Verma IM, Adamson ED (1983b) Expression of c-onc genes: c-fos transcripts accumulate to high levels during development of mouse placenta, yolk sac, and amnion. EMBO Journal 5:679–684

    Google Scholar 

  • Murray MJ, Cunningham JM, Parada LF, Dautry F, Lebowitz P, Weinberg RF (1983) The HL-60 transforming sequence: a ras oncogene coexisting with altered myc genes in hematopoietic tumors. Cell 33:749–757

    Google Scholar 

  • Neuberger MS, Calabi F (1983) Reciprocal chromosome translocation between c-myc and immunoglobulin y2b genes. Nature 305:240–243

    Google Scholar 

  • Newbold RF, Overell RW (1983) Fibroblast immortality is a prerequisite for transformation by EJ c-Ha-ras oncogene. Nature 304:648–651

    Google Scholar 

  • Newmark P (1983) The razmatazz of cancer genes. Nature 305: 470–471

    Google Scholar 

  • Nishikura K, Rushidi AA, Erickson J, Watt R, Ravena G, Groce CM (1983) Differential expression of the normal and of the translocated human c-myc oncogenes in B-cells. Proc Natl Acad Sci USA 80:4822–4826

    Google Scholar 

  • O'Toole CM, Povey S, Hepburn P, Franks LM (1983) Identity of some human bladder cancer cell lines. Nature 301:429–430

    Google Scholar 

  • Parada LF, Tabin CJ, Shih C, Weinberg RA (1982) Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature 297:474–478

    Google Scholar 

  • Perry RP (1983) Consequences of myc invasion of immunoglobulin loci: facts and speculations. Cell 33:647–649

    Google Scholar 

  • Pulciani S, Santos E, Lauver AV, Long LK, Aaronson SA, Barbacid M (1982) Oncogenes in solid human tumors. Nature 300:539–542

    Google Scholar 

  • Rapp UR, Goldsborough MD, Mack GE, Brunner TI, Groffen J, Reynolds EH, Stephenson JR (1983) Structure and biological activity of v-raf, a unique oncogene transduced by a retrovirus. Proc Natl Acad Sci USA 80:4218–4222

    Google Scholar 

  • Reddy EP (1983) Nucleotide sequence analysis of the T24 human bladder carcinoma oncogene. Science 220:1061–1063

    Google Scholar 

  • Reddy EP, Reynold RK, Santos E, Barbacid M (1982) A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature 300:149–152

    Google Scholar 

  • Robertson M (1983) What happens when cellular oncogenes collide with immunoglobulin genes? Nature 302:474–475

    Google Scholar 

  • Rowley JD (1983) Human oncogene locations and chromosomal aberrations. Nature 301:290–291

    Google Scholar 

  • Ruley EH (1983) Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature 304:602–606

    Google Scholar 

  • Santos E, Reddy EP, Pulciani S, Feldmann R, Barbacid M (1983) Spontaneous activation of a human proto-oncogene. Proc Natl Acad Sci USA 80:4679–4683

    Google Scholar 

  • Schäfer R, Griegel S, Dubbert MA, Willecke K (1984) Unstable transformation of mouse 3T3 cells by transfection with DAN from normal human lymphocytes. EMBO Journal, in press

  • Schimke RT (ed 1982) Gene amplification. Cold Spring Harbor

  • Schwab M, Alitalo K, Varmus HE, Bishop JM, George D (1983a) A cellular oncogene (c-Ki-ras) is amplified overexpressed and located within karyotype abnormalities in mouse adenocorotical tumor cells. Nature 303:497–501

    Google Scholar 

  • Schwab M, Alitalo K, Klempnauer KH, Varmus HE, Bishop JM, Gilbert F, Brodeur G, Goldstein M, Frent J (1983b) Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumor. Nature 305:245–248

    Google Scholar 

  • Sefton BM, Hunter T, Ball EH, Singer SJ (1981) Vinculin: a cytoskeletal target of the transforming protein of Rous sarcoma virus. Cell 24:165–174

    Google Scholar 

  • Sefton BM, Trowbridge IS, Cooper JA, Scolnick EM (1982) The transforming proteins of Rous sarcoma virus, Harvey sarcoma virus, and Abelson virus contain tightly bound lipid. Cell 31: 465–474

    Google Scholar 

  • Shih C, Shilo BZ, Goldfarb MP, Dannenberg A, Weinberg RA (1979) Passage of phenotypes of chemically transformed cells via transfection of DNA and chromatin. Proc Natl Acad Sci USA 76: 5774–5778

    Google Scholar 

  • Shih C, Padhy LC, Murray M, Weinberg RA (1981) Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature 290:261–264

    Google Scholar 

  • Shimizu K, Goldfarb M, Suard Y, Perucho M, Li Y, Kamata T, Feramisco J, Stavnezer E, Fogh J, Wigler MH (1983a) Three human transforming genes are related to the viral ras oncogenes. Proc Natl Acad Sci USA 80:2112–2116

    Google Scholar 

  • Shimizu K, birnbaum D, Ruley MA, Fasano O, Suard Y, Edlund L, Taparowsky E, Goldfarb M, Wigler M (1983b) Structure of the Ki-ras gene of the human lung carcinoma cell line Calu-1. Nature 304:497–500

    Google Scholar 

  • Shimizu K, Goldfarb M, perucho M, Wigler M (1983c) Isolation and preliminary characterization of the transforming gene of a human neuroblastoma cell line. Proc Natl Acad Sci USA 80: 383–387

    Google Scholar 

  • Spector DH, Vacquier JP (1983) Human cytomegalovirus (strain AB 169) contains sequences related to the avian retrovirus oncogene v-myc. Proc Natl Acad Sci USA 80:3889–3893

    Google Scholar 

  • Swanstrom R, Parker RC, Varmus HE, Bishop JM (1983) Transduction of a cellular oncogene. The genesis of Rous sarcoma virus. Proc Natl Acad Sci USA 80:2519–2523

    Google Scholar 

  • Tabin CJ, Bradley SM, Bargmann CI, Weinberg RA, Papageorge AG, Scolnick AM (1982) Mechanism of activation of a human oncogene. Nature 300:143–149

    Google Scholar 

  • Taparowsky E, Shimizu K, Goldfarb M, Wigler M (1983) Structure and activation of the human N-ras gene. Cell 34:581–586

    Google Scholar 

  • Todaro G, Green H (1963) Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J Cell Biol 17:299–313

    Google Scholar 

  • Waterfield MD, Scrace GT, Whittle N, Stroobant P, Johnsson A, Wasteson A, Westermark B, Heldin CH, Huang JS, Denel TF (1983) Platelet-derived growth factor is structurally related to the putative transforming protein p28sis of simian sarcoma virusis. Nature 304:35–39

    Google Scholar 

  • Watson R, Oskarsson M, Vande Woude GF (1982) Human DNA sequences homologous to the transforming gene (mos) of Moloney murine sarcoma virus. Proc Natl Acad Sci USA 79:4078–4082

    Google Scholar 

  • Weinberg RA (1982a) Fewer and fewer oncogenes. Cell 30:3–4

    Google Scholar 

  • Weinberg RA (1982b) Oncogenes of spontaneous and chemically induced tumors. Adv Cancer Res 36:149–163

    Google Scholar 

  • Weinberg RA (1983) A molecular basis of cancer. Scientific American, November 1983, pp 126–142

  • Wierenga RK, Hol WGJ (1983) Predicted nucleotide-binding properties of p21 protein and its cancer-associated variant. Nature 302: 842–844

    Google Scholar 

  • Yuasa Y, Srivastava SK, Dunn CY, Rhim JS, Reddy E, Aaronson SA (1983) Acquisition of transforming properties by alternative point mutations within c-bas/has human proto-oncogene. Nature 303:775–779

    Google Scholar 

  • Yunis JJ (1983) The chromosomal basis of human neoplasia. Science 221:227–236

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willecke, K., Schäfer, R. Human oncogenes. Hum Genet 66, 132–142 (1984). https://doi.org/10.1007/BF00286587

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00286587

Keywords

Navigation