Skip to main content
Log in

Entrainment in pacemakers characterized by a V-shaped PRC

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The behaviour of a class of pacemakers characterized by a V-shaped PRC has been determined, for all possible frequencies and amplitudes of stimulation. The analytical study of the phase transition equation reveals that all rhythmic stimuli, but for a set of measure zero, give rise to entrainment. The ratio between firing and stimulation frequencies is a generalized Cantor function of the ratio between spontaneous and stimulation frequencies. A procedure to compute the detailed input/output pattern that underlies each entrainment ratio is given. Finally, the neurophysiological assumptions and implications of the results obtained are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ayers, J. L., Selverston, A. I.: Monosynaptic entrainment of an endogenous pacemaker network: a cellular mechanism for von Holt's magnet effect. J. Comp. Physiol. A 129, 5–17 (1979)

    Google Scholar 

  2. Beltz, B., Gelperin, A.: Mechanisms of peripheral modulation of salivary burster in Limax maximus: a presumptive sensorimotor neuron. J. Neurophysiol. 44, 675–686 (1980)

    Google Scholar 

  3. Bernussou, J.: Point mapping stability. Oxford: Pergamon Press 1977

    Google Scholar 

  4. Buño, W., Fuentes, J.: Resetting in crayfish stretch receptor. J. Physiol, (to appear 1985)

  5. Coddington, E. A., Levinson, N.: Theory of ordinary differential equations. New York: McGraw-Hill 1955

    Google Scholar 

  6. Gelbaum, B. R., Olmstead, J. M. H.: Counterexamples in analysis. San Francisco: Holden-Day 1964

    Google Scholar 

  7. Glass, L., Graves, C., Petrillo, G. A., Mackey, M. C.: Unstable dynamics of a periodically driven oscillator in the presence of noise. J. Theor. Biol. 86, 455–475 (1980)

    Google Scholar 

  8. Glass, L., Mackey, M. C.: A simple model for phase locking of biological oscillators. J. Math. Biol. 7, 339–352 (1979)

    Google Scholar 

  9. Guevara, M. R., Glass, L.: Phase locking, period doubling bifurcations and chaos in a mathematical model of a periodically driven oscillator: a theory of the entrainment of biological oscillators and the generation of cardiac dysrhythmias. J. Math. Biol. 14, 1–23 (1982)

    Google Scholar 

  10. Guevara, M. R., Glass, L., Shrier, A.: Phase locking, period-doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cells. Science 214, 18–20 (1981)

    Google Scholar 

  11. Hartline, D. K.: Simulation of phase-dependent pattern changes to perturbations of regular firing in crayfish stretch receptor. Brain Res. 110, 245–257 (1976)

    Google Scholar 

  12. Herman, M. R.: Measure de Lebesgue et nombre de rotation. In: Palis. J., de Carmo, M. (eds.) Geometry and Topology. Lecture Notes in Math. 597, 271–293, Berlin Heidelberg New York: Springer 1977

  13. Holden, A. V., Ramadan, S. M.: The response of a molluscan neurone to a cyclic input: entrainment and phase-locking. Biol. Cybern. 41, 157–163 (1981)

    Google Scholar 

  14. Hoppensteadt, F. C., Keener, J. P.: Phase locking of biological clocks. J. Math. Biol. 15, 339–349 (1982)

    Google Scholar 

  15. Ikeda, N.: Model of bidirectional interaction between myocardial pacemakers based on the Phase Response Curve. Biol. Cybern. 43, 157–167 (1982)

    Google Scholar 

  16. Ikeda, N., Tsuruta, H., Sato, T.: Difference equation model of the entrainment of myocardial pacemaker cells based on the Phase Response Curve. Biol. Cybern. 42, 117–128 (1981)

    Google Scholar 

  17. Keener, J. P.: Chaotic behavior in piecewise continuous difference equations. Trans. Am. Math. Soc. 261, 589–604 (1980)

    Google Scholar 

  18. Keener, J. P.: On cardiac arhythmias: AV conduction block. J. Math. Biol. 12, 215–225 (1981)

    Google Scholar 

  19. Keener, J. P., Hoppensteadt, F. C., Rinzel, J.: Integrate-and-fire models of nerve membrane response to oscillatory input. SIAM J. Appl. Math. 41, 3, 503–517 (1981)

    Google Scholar 

  20. Knight, B. W.: Dynamics of encoding in a population of neurons. J. Gen. Physiol. 59, 734–766 (1972)

    Google Scholar 

  21. Kohn, A. F., Freitas da Rocha, A., Segundo, J. P.: Presynaptic irregularity and pacemaker interactions. Biol. Cybern. 41, 5–18 (1981)

    Google Scholar 

  22. Nagumo, J., Sato, S.: On a response characteristic of a mathematical neuron model. Kybernetic 10, 155–164 (1971)

    Google Scholar 

  23. Pinsker, H. M., Ayers, J.: Neuronal oscillators. In: Willis, W. D. (ed.) Neurobiology, Chap. 9. Churchill Livingstone Inc. 1983

  24. Segundo, J. P., Kohn, A. F.: A model of excitatory synaptic interactions between pacemakers. Its reality, its generality and the principles involved. Biol. Cybern. 40, 113–129 (1981)

    Google Scholar 

  25. Torras, C.: Pacemaker neuron model with plastic firing rate: entrainment and learning ranges. Biol. Cybern. 52, 79–91 (1985a)

    Google Scholar 

  26. Torras, C.: Temporal-pattern learning in neural models. Lect. Notes Biomath. 63. Berlin Heidelberg New York: Springer 1985b

  27. Vinogradov, I.: Fundamentos de la teoría de números. Moscow: Editorial MIR, 1977

    Google Scholar 

  28. Yoshizawa, S., Osada, H., Nagumo, J.: Pulse sequences generated by a degenerate analog neuron model. Biol. Cybern. 45, 23–33 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torras i Genís, C. Entrainment in pacemakers characterized by a V-shaped PRC. J. Math. Biol. 24, 291–312 (1986). https://doi.org/10.1007/BF00275639

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00275639

Key words

Navigation