Skip to main content
Log in

Three-dimensional structure of ectatomin from Ectatomma tuberculatum ant venom

  • Research Paper
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

Two-dimensional 1H NMR techniques were used to determine the spatial structure of ectatomin, a toxin from the venom of the ant Ectatomma tuberculatum. Nearly complete proton resonance assignments for two chains of ectatomin (37 and 34 amino acid residues, respectively) were obtained using 2D TOCSY, DQF-COSY and NOESY experiments. The cross-peak volumes in NOESY spectra were used to define the local structure of the protein and generate accurate proton-proton distance constraints employing the MARDIGRAS program. Disulfide bonds were located by analyzing the global fold of ectatomin, calculated with the distance geometry program DIANA. These data, combined with data on the rate of exchange of amide protons with deuterium, were used to obtain a final set of 20 structures by DIANA. These structures were refined by unrestrained energy minimization using the CHARMm program. The resulting rms deviations over 20 structures (excluding the mobile N- and C-termini of each chain) are 0.75 Å for backbone heavy atoms, and 1.25 Å for all heavy atoms. The conformations of the two chains are similar. Each chain consists of two α-helices and a hinge region of four residues; this forms a hairpin structure which is stabilized by disulfide bridges. The hinge regions of the two chains are connected together by a third disulfide bridge. Thus, ectatomin forms a four-α-helical bundle structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ArsenievA.S., PluzhnikovK.A., NoldeD.E., SobolA.G., TorgovM.Yu., SukhanovS.V. and GirshinE.V. (1994) FEBS Lett., 347, 112–116.

    Article  Google Scholar 

  • BanyardS.H., StammersD.K. and HarrisonP.M. (1978) Nature, 271, 282–284.

    Article  Google Scholar 

  • BarsukovI.L., NoldeD.E., LomizeA.L. and ArsenievA.S. (1992) Eur. J. Biochem., 206, 665–672.

    Article  Google Scholar 

  • BloomerA.C., ChampnessJ.N., BricogneG., StadenR. and KlugA. (1978) Nature, 276, 362–368.

    Article  Google Scholar 

  • BlumM.S. (1992) J. Toxicol., 11, 115–164.

    Google Scholar 

  • BorgiasB.A. and JamesT.L. (1988) J. Magn. Reson., 79, 493–512.

    Google Scholar 

  • BorgiasB.A. and JamesT.L. (1990) J. Magn. Reson., 87, 475–487.

    Google Scholar 

  • BrooksB.R., BrucoleriR.E., OlafsonB.D., StatesD.G., SwaminathanS. and KarplusM. (1988) J. Comput. Chem. 4, 187–217.

    Google Scholar 

  • ChouK.-C., MaggioraG.M., NemethyG. and ScheragaA. (1988) Proc. Natl. Acad. Sci. USA 85, 4295–4299.

    ADS  Google Scholar 

  • EcclesS., GüntertP., BilleterM. and WüthrichK. (1991) J. Biomol. NMR, 1, 111–130.

    Article  Google Scholar 

  • EngelmanD.M. and SteitzT.A. (1981) Cell 23, 411–422.

    Article  Google Scholar 

  • GreenfieldN. and FasmanG.D. (1969) Biochemistry 8, 4108–4116.

    Article  Google Scholar 

  • GüntertP., QianY.Q., OttingG., MüllerM., GehringW. and WüthrichK. (1991) J. Mol. Biol. 217, 531–540.

    Google Scholar 

  • GüntertP. and WüthrichK. (1991) J. Biomol. NMR, 1, 447–456.

    Article  Google Scholar 

  • HendricksonW.A., KlippensteinG.L. and WardK.B. (1975). Proc. Natl. Acad. Sci. USA, 72, 2160–2164.

    ADS  Google Scholar 

  • KeepersJ.W. and JamesT.L. (1984) J. Magn. Reson. 57, 404–426.

    Google Scholar 

  • LomizeA.L., SobolA.G. and ArsenievA.S. (1990a) Bioorg. Khim. (Russia), 16, 179–201.

    Google Scholar 

  • LomizeA.L., ArsenievA.S., MaslennikovI.V. and BystrovV.F. (1990b) Bioorg. Khim. (Russia) 16, 1310–1324.

    Google Scholar 

  • LomizeA.L., PervushinK.V. and ArsenievA.S. (1992). J. Biomol. NMR, 2, 361–372.

    Article  Google Scholar 

  • MathewsF.S., BethgeP.H. and CzerwinskiE.W. (1979) J. Biol. Chem., 254, 1699–1706.

    Google Scholar 

  • ParkerM.W., PostmaJ.P.M., PattusF., TuckerA.D. and TsernoglouD. (1992) J. Mol. Biol., 224, 639–657.

    Article  Google Scholar 

  • PluzhnikovK.A., NoldeD.E., TertishnikovaS.M., SukhanovS.V., SobolA.G., TorgovM.Yu., FilippovA.K., ArsenievA.S. and GrishinE.V. (1994) Bioorg. Khim. (Russia), 20, 857–871.

    Google Scholar 

  • SchmidtJ.O., BlumM.S. and OveralW.L. (1986) Toxicon 24, 907–921.

    Google Scholar 

  • ThomasP.D., BasusV.J. and JamesT.L. (1991) Proc. Natl. Acad. Sci. USA, 88, 1237–1241.

    ADS  Google Scholar 

  • WeberP.C., BartschR.G., CusanovichM.A., HamlinR.C., HowardA., JordanS.R., KamenM.D., MeyerT.E., WeatherfordD.W., XuongN.H. and SalemmeF.R. (1980) Nature, 286, 302–304.

    Article  Google Scholar 

  • WeberP.C. and SalemmeF.R. (1980) Nature, 287, 82–84.

    Article  Google Scholar 

  • WüthrichK., BilleterM. and BraunW. (1984) J. Mol. Biol., 180, 715–740.

    Google Scholar 

  • WüthrichK. (1986) NMR of Proteins and Nucleic Acids, Wiley, New York, NY.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nolde, D.E., Sobol, A.G., Pluzhnikov, K.A. et al. Three-dimensional structure of ectatomin from Ectatomma tuberculatum ant venom. J Biomol NMR 5, 1–13 (1995). https://doi.org/10.1007/BF00227465

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00227465

Keywords

Navigation