Skip to main content
Log in

Analysis of the expression of potato uridinediphosphate-glucose pyrophosphorylase and its inhibition by antisense RNA

  • Published:
Planta Aims and scope Submit manuscript

Abstract

The expression of the enzyme UDP-glucose pyrophosphorylase (UGPase; EC 2.7.7.9) from potato (Solanum tuberosum L.) was analysed with respect to sink-source interactions and potato tuber storage. The highest level of expression was found in developing tubers, the strongest sink tissue. Storage of mature tubers at low temperatures led to an increase of the steady-state level of UGPase mRNA, implicating a role of this enzyme in the process of “cold-sweetening”. Transgenic plants were created expressing UGPase antisensee RNA under the control of the 35S promoter of the Cauliflower Mosaic Virus with the polyadenylation signal of the octopine-synthase gene. Regenerated plants were tested for reduction of UGPase at the RNA, protein and activity levels. Plants with a 95%–96% reduction of UGPase activity in growing tubers showed no change in growth and development. Also, carbohydrate metabolism in tubers of these plants was not substantially affected, indicating that only 4% of the wild-type UGPase activity is sufficient for the enzyme to function in plant growth and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cDNA:

copy DNA

CaMV:

Cauliflower Mosaic Virus

Glc1P:

glucose-1-phosphate

UDPGlc:

UDP-glucose

SDS-PAGE:

sodium dodecyl sulfate-polyacrylamide gel electrophoresis

UGPase:

UDP-glucose pyrophosphorylase

References

  • Albrecht, G.J., Bass, S.T., Seifert, L.L., Hansen, R.G. (1966) Crystallization and properties of undine diphosphate glucose pyrophosphorylase from liver. J. Biol. Chem 241, 2968–2975

    Google Scholar 

  • Amasino, R.M. (1986) Acceleration of nucleic acid hybridisation rate by polyethylene glycol. Anal. Biochem. 152, 304–307

    Google Scholar 

  • Bevan, M. (1984) Binary Agrobacterium vectors for plant transformation. Nucl. Acids Res. 12, 8711–8721

    Google Scholar 

  • Brede, G., Flaervik, E., Valla, S. (1991) Nucleotide sequence and expression analysis of the Acetobacter xylinum uridine diphosphoglucose pyrophosphorylase gene. J. Bacteriol. 173, 7042–7045

    Google Scholar 

  • Bullock, W.O., Fernandez, J.M., Short, J.M. (1987) XL1-blue: a high efficiency plasmid transforming recA Escherichia coli strain with β-galactosidase selection. BioTechniques 5, 376–378

    Google Scholar 

  • Claussen, W., Loveys, B.R., Hawker, J.S. (1985) Comparative investigation on the distribution of sucrose-synthase activity and invertase activity within growing, mature and old leaves of some C3 and C4 plant species. Physiol. Plant. 65, 275–280

    Google Scholar 

  • Deblaere, R., Bytebier, B., de Greve, H., Debroeck, F., Shell, J., van Montagu, M., Leemas, J. (1985) Efficient octopine Ti plasmid-derived vectors of Agrobacterium mediated gene transfer to plants. Nucl. Acids Res. 13, 4777–4788

    Google Scholar 

  • Dixon, W.L., Franks, F., ap Rees, T. (1981) Cold lability of phosphofructokinase from potato tubers. Phytochemistry 20, 969–972

    Google Scholar 

  • Fishel, B.R., Manrow, R.E., Dottin, R.P. (1982) Developmental regulation of multiple forms of UDP glucose pyrophosphorylase of Dictyostelium. Dev. Biol. 92, 175–187

    Google Scholar 

  • Franck, A., Guilley, H., Jonard, G., Richards, K., Hirth, L. (1980) Nucleotide sequence of Cauliflower Mosaic Virus DNA. Cell 21, 285–294

    Google Scholar 

  • Gielen, J., de Beuckeleer, M., Seurinck, J., Debroeck, H., de Greve, H., Lemmers, M., van Montagu, M., Schell, J. (1984) The complete nucleotide sequence of the TL-DNA of the Agrobacterium tumefaciens plasmid pTiAch5. EMBO J. 3, 835–846

    Google Scholar 

  • Ginsburg, V. (1958) Purification of uridinediphosphate glucose pyrophosphorylase from mung bean seedlings. J. Biol. Chem. 232, 55

    Google Scholar 

  • Gustafson, G.L., Gander, J.E. (1972) Uridine diphosphate glucose pyrophosphorylase from Sorghum vulgare. J. Biol. Chem. 247, 1387–1397

    Google Scholar 

  • Hammond, J.B.W., Burrel, M.M., Kruger, V.J. (1990) Effect of low temperature on the activity of phosphofructokinase from potato tubers. Planta 180, 613–616

    Google Scholar 

  • Hatzfeld, W.D., Stitt, M. (1990) A study of the rate of recycling of triose phosphates in heterotrophic Chenopodium rubrum cells, potato tubers and maize endosperm. Planta 180, 198–204

    Google Scholar 

  • Höfgen, R., Willmitzer, L. (1988) Storage of competent cells for Agrobacterium transformation. Nucl. Acids Res. 16, 9877

    Google Scholar 

  • Hondo, T., Hara, A., Funaguma, T. (1983) The purification and some properties of the UDP-glucose pyrophosphorylase from pollen of Typha latifolia Linné. Plant Cell Physiol. 24, 61–69

    Google Scholar 

  • Isherwood, F.A. (1976) Mechanism of starch-sugar interconversion in Solarium tuberosum. Phytochemistry 15, 33–41

    Google Scholar 

  • Kamogawa, A., Kurahashi, K. (1965) Purification and properties of uridinediphosphate glucose pyrophosphorylase from Escherichia coli K12. J. Biochem. 57, 758–765

    Google Scholar 

  • Katsube, T., Kazuta, Y., Mori, H., Nakano, K., Tanizawa, K., Fukui, T. (1990) UDP-glucose pyrophosphorylase from potato tuber: cDNA cloning and sequencing. J. Biochem. 108, 321–326

    Google Scholar 

  • Koßmann, J., Visser, R.G.F., Müller-Röber, B., Willmitzer, L., Sonnewald, U. (1991) Cloning and expression analysis of a potato cDNA that encodes branching enzyme: evidence for co-expression of starch biosynthetic genes. Mol. Gen. Genet. 230, 39–44

    Google Scholar 

  • Laemmli, U.K. (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227, 680–685

    PubMed  Google Scholar 

  • Logemann, J., Schell, J., Willmitzer, L. (1987) Improved method for the isolation of RNA from plant tissues. Anal. Biochem. 163, 21–26

    Google Scholar 

  • Maniatis, T., Fritsch, E.F., Sambrook, J. (1982) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Morell, S., ap Rees, T. (1986) Sugar metabolism in developing tubers of Solanum tuberosum. Phytochemistry 25, 1579–1585

    Google Scholar 

  • Munch-Petersen, A. (1955) Investigations of the properties and mechanism of the uridine diphosphate glucose pyrophosphorylase reaction. Acta Chem. Scand. 9, 1523

    Google Scholar 

  • Murashige, T., Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473–497

    Google Scholar 

  • Nakano, K., Omura, Y., Tagaya, M., Fukui, T. (1989) UDP-glucose pyrophosphorylase from potato tuber: purification and characterisation. J. Biochem. 106, 528–532

    Google Scholar 

  • Pollock, C.J., ap Rees, T. (1975) Activities of enzymes of sugar metabolism in cold-stored tubers of Solanum tuberosum. Phytochemistry 14, 613–617

    Google Scholar 

  • Ragheb, J.R., Dottin, P. (1987) Structure and sequence of a UDP glucose pyrophosphorylase gene of Dictyostelium discoideum. Nucl. Acids Res. 15, 3891–3906

    Google Scholar 

  • Rocha-Sosa, M., Sonnewald, U., Frommer, W., Stratmann, M., Schell, J., Willmitzer, L. (1989) Both developmental and metabolic signals activate the promoter of a class I patatin gene. EMBO J. 8, 23–29

    Google Scholar 

  • Sanger, F., Nicklen, S., Coulson, A.R. (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463–5467

    Google Scholar 

  • Sasaki, T., Tadokoro, K., Suziki, S. (1971) Multiple forms of invertase of potato tuber stored at low temperature. Phytochemistry 10, 2047–2050

    Google Scholar 

  • Sowokinos, J.R. (1976) Pyrophosphorylases in Solanum tuberosum. Plant Physiol. 57, 63–68

    Google Scholar 

  • Spychalla, J.P., Desborough, S.L. (1990) Fatty acids, membrane permeability, and sugars of stored potato tubers. Plant Physiol. 94, 1207–1213

    Google Scholar 

  • Stitt, M., Wirtz, W., Heldt, H.W. (1978) Pathway of starch breakdown in photosynthetic tissue of Pisum sativum. Biochim. Biophys. Acta 544, 200–214

    Google Scholar 

  • Stitt, M., Lilley, R.M.C., Gerhard, R., Heldt, H.W. (1989) Metabolite levels in specific cells and subcellular compartments of plant leaves. Methods Enzymol. 174, 518–552

    Google Scholar 

  • Tsuboi, K.K., Fukunaga, K., Petricciani, J.C. (1969) Purification and specific kinetic properties of erythrocyte uridine diphosphate glucose pyrophosphorylase. J. Biol. Chem. 244, 1008–1015

    Google Scholar 

  • Vervliet, G., Holsters, M., Teuchy, H., van Montagu, M., Schell, J. (1975) Characterisation of different plaque-forming and defective temperate phages in Agrobacterium strains. J. Gen. Virol. 26, 33–48

    Google Scholar 

  • Villar-Palasi, C., Lamer, J. (1960) Uridinediphosphate glucose pyrophosphorylase from skeletal muscle. Arch. Biochem. Biophys. 86, 61–66

    Google Scholar 

  • Viola, R., Davies, H.V., Chudeck, A.R. (1991) Pathway of starch and sucrose biosynthesis in developing tubers of potato (Solanum tuberosum L.) and seeds of faba bean (Vicia faba L.). Planta 183, 202–208

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We are grateful to Dr. J.P. Spychalla (Cambridge Laboratory, Norwich, Norfolk, UK) for providing antiserum directed against the potato tuber UGPase protein. We thank J. Bergstein and B. Schäfer for photographic work, J. Dietze for plant transformation and R. Breitfeld and B. Burose for taking care of the greenhouse plants.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zrenner, R., Willmitzer, L. & Sonnewald, U. Analysis of the expression of potato uridinediphosphate-glucose pyrophosphorylase and its inhibition by antisense RNA. Planta 190, 247–252 (1993). https://doi.org/10.1007/BF00196618

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00196618

Key words

Navigation