Skip to main content
Log in

The electron correlation cusp

I. Overview and partial wave analysis of the Kais function

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

The Kais function is an exact solution of the Schrödinger equation for a pair of electrons trapped in a parabolic potential well with r 12 −1 electron-electron interaction. Partial wave analysis (PWA) of the Kais function yields E L = E + C1(L + \-C −1 2)−3 + O(L −5) where E is the exact energy and E L the energy of a renormalized finite sum of partial waves omitting all waves with angular momentum ℓ > L. Slight rearrangement of an earlier result by Hill shows that the corresponding full CI energy differs from E L only by terms of order O(L −5) with FCI values of C 1 and \-C −1 2 identical to PWA values. The dimensionless \-C 2 parameter is weakly dependent upon the size of the physical system. Its value is 0.788 for the Kais function, and 0.893 for the less diffuse helium atom, and approaches \-C 2→ 1 in the limit of an infinitely compact charge distribution. The ℓth energy increment satisfies an approximate virial theorem which becomes exact in the high ℓ limit. This analysis, formulated to facilitate use of the Maple system for symbolic computing, lays the mathematical ground work for subsequent studies of the electron correlation cusp problem. The direction of future papers in this series is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A theorem by Kato implies that all wave functions in nonrelativistic molecular quantum mechanics are continuous. References in the present paper to “discontinuities” refer to discontinuities in a first, or higher, partial derivative

  2. Kato T (1957) Commun Pure Appl Math 10:151. Theorem I establishes the continuity of wave functions. Theorem II establishes nuclear and correlation cusp conditions

    Google Scholar 

  3. Hylleraas EA (1964) Adv Quantum Chem 1:1. This article by one of the pioneers in the subject reviews early computations of the helium atom wave function

    Google Scholar 

  4. Pluvinage PH (1950) Ann Phys 10:147

    Google Scholar 

  5. Roothaan CCJ, Weiss AW (1960) Rev Mod Phys 32:194

    Google Scholar 

  6. Bingel WA (1963) Z Naturforschung 18a:1249

    Google Scholar 

  7. Pack RT, Byers-Brown W (1966) J Chem Phys 45: 556; Carlsson AE, Ashcroft NW, (1982) Phys Rev B 25:3474

    Google Scholar 

  8. Kutzelnigg W, Morgan JD III (1992) J Chem Phys 96:4484

    Google Scholar 

  9. Rassolov VA, Chipman DM (1996) J Chem Phys 104:9908

    Google Scholar 

  10. A very similar symmetry argument, attributed to John D. Morgan III, appears in Appendix E of Ref. [11]

  11. Hill RN (1985) J Chem Phys 83:1173

    Google Scholar 

  12. Andersson K, Fülscher MP, Karlström G, Lindh R, Malmqvist P-Aa, Olsen J, Roos BO, Sadlej AJ, Blomberg MRA, Siegbahn PEM, Kellö V, Noga J, Urban M, Widmark P-O (1994) MOLCAS, version 3, University of Lund, Sweden

    Google Scholar 

  13. Wolinski K, Pulay P (1989) J Chem Phys 90:3647

    Google Scholar 

  14. Malrieu JP, Heully JL, Zaitsevskii A (1995) Theor Chim Acta 90:187. This paper presents an overview and comparison of MRPT methods

    Google Scholar 

  15. Roos BO, Andersson K, Fülscher MP, Malmqvist P-Aa, Serrando-Andrés L, Perloot K, Merchán M (1996) Adv Chem Phys 93:219

    Google Scholar 

  16. White RJ, Stillinger FH (1971) Phys Rev A 3:1521

    Google Scholar 

  17. Bartlett JH (1937) Phys Rev 51:661. This paper contains what appears to be the first suggestion in the literature of a logarithmic singularity at the origin in the ground state helium atom wave function

    Google Scholar 

  18. Fock VA (1954) Izvestiya Akademii Nauk USSR Ser Fiz 18:161; Engl. translation: D Kngl Norske Videnskab Selsk Forh (1958) 31:138, 145

    Google Scholar 

  19. Frankowski K, Pekeris C (1966) Phys Rev 146:46; 150:366; Frankowski K (1967) Phys Rev 160:1

    Google Scholar 

  20. Morgan JD III (1986) Theor Chim Acta 69:181

    Google Scholar 

  21. Baker JD, Freund DE, Hill RN, Morgan JD III (1990) Phys Rev A 41:1247

    PubMed  Google Scholar 

  22. Engels B (1994) J Chem Phys 100:1380

    Google Scholar 

  23. Bartlett JH, Gibbons J, Dunn C (1935) Phys Rev 47:679. This early analysis was subsequently strengthened as summarized in footnote 1 in Ref. [20]

    Google Scholar 

  24. Kinoshita T (1957) Phys Rev 105:1490; 115:366; Koga T, Morishita S (1995) Z Physik D 34:71; Koga T (1996) J Chem Phys 104:6308

    Google Scholar 

  25. Freund DE, Huxtable BD, Morgan JD III (1984) Phys Rev A 29:980. Results for the 476-term trial function are reported in Ref. [21] p. 1254

    Google Scholar 

  26. Umrigar CJ, Gonze X (1994) Phys Rev A 50:3827

    PubMed  Google Scholar 

  27. Klahn B, Bingel WA (1977) Theor Chim Acta 44:9, 27. This paper presents a readable discussion of convergence criteria with chemically meaningful examples of the inadequacy of completeness-in-the-mean-type convergence in the sense of a Hilbert space L 2 norm. Klahn and Bingel prove stronger completeness in what some other authors call the second Sobelev space

    Google Scholar 

  28. Thakkar AJ, Koga T (1994) Phys Rev A 50:954

    PubMed  Google Scholar 

  29. Pekeris CL (1958) Phys Rev 112:1649

    Google Scholar 

  30. Kais S, Herschbach DR, Levine RD (1989) J Chem Phys 91:7791

    Google Scholar 

  31. Char BW, Geddes KO, Gonnet GH, Leong BL, Monagan MB, Watt SM (1991) Maple V Language reference manual, Springer, New York; Char BW, Geddes KO, Gonnet GH, Leong BL, Monagan MB, Watt SM (1992) First Leaves:A tutorial introduction to Maple V, Springer, New York; Blachman NR, Mossinghoff MJ (1994) Maple V quick reference, Brooks/Cole Publishing, New York

    Google Scholar 

  32. Schwartz C (1962) Phys Rev 126:1015, (1963) Methods Comp Phys 2:241

    Google Scholar 

  33. Klahn B, Morgan JD III (1984) J Chem Phys 81:410

    Google Scholar 

  34. Carroll DP, Silverstone HJ, Metzger RM (1979) J Chem Phys 71:4142

    Google Scholar 

  35. Schmidt HM, v. Hirschhausen H (1983) Phys Rev A 28:3179

    Google Scholar 

  36. Decleva P, Lisini A, Venuti M (1995) Int J Quantum Chem 56:27

    Google Scholar 

  37. Bukowski R, Jeziorski B, Rybak S, Szalewicz K (1995) J Chem Phys 102:888; Kutzelnigg W, Klopper W (1991) J Chem Phys 94:1985; 94:2020; Termath V, Klopper W, Kutzelnigg W (1991) J Chem Phys 94:2002; Klopper W, Almlöf J (1993) J Chem Phys 99:5167; Klopper W (1995) J Chem Phys 102:6168; Noga J, Tunega D, Klopper W, Kutzelnigg W (1995) J Chem Phys 103:309; Klopper W, Schütz M, Lüthi HP, Leutwyler (1995) J Chem Phys 103:1085; Schütz M, Klopper W, Lüthi HP, Leutwyler (1995) J Chem Phys 103:6114; Klopper W, Noga J (1995) J Chem Phys 103:6127; Persson BJ, Taylor PR J Chem Phys, in press

    Google Scholar 

  38. Kestner NR, Sinanoklu O (1962) Phys Rev 128:2687

    Google Scholar 

  39. Tuan DF (1969) J Chem Phys 50:2740; White RJ, Byers-Brown W (1970) J Chem Phys 53:3869; Benson JM, Byers-Brown W (1970) J Chem Phys 53:3880

    Google Scholar 

  40. Kellman ME, Herrick DR (1980) Phys Rev A 22:1536; Krause JL, Berry RS (1985) Phys Rev A 31:3502; Berry RS, Krause JL (1986) Phys Rev A 33:2865

    Google Scholar 

  41. Kais S, Herschbach DR, Handy NC, Murray CW, Laming GJ (1993) J Chem Phys 99:417

    Google Scholar 

  42. Laufer PM, Krieger JB (1986) Phys Rev A 33:1480

    PubMed  Google Scholar 

  43. Filippi C, Umrigar CJ, Taut M (1994) J Chem Phys 100:1290

    Google Scholar 

  44. Taut M (1993) Phys Rev A 48:3561

    PubMed  Google Scholar 

  45. Eddington AS (1946) Fundamental theory, Cambridge Univ. Press, Cambridge; Coleman AJ (1967) Int J Quant Chem Symp 1:457

    Google Scholar 

  46. There are also internal and external principal quantum numbers, but we are not concerned with them

  47. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1986) Numerical recipes, Cambridge Univ Press, Chap 16

  48. Kutzelnigg W, Morgan JD III (1996) Z Physik D, in press

  49. Moore CE (1971) Atomic energy levels, NBS Circular 467 Volume 1, US Government Printing Office, Washington, DC, p. 107

    Google Scholar 

  50. Hill defines C, to be the integral in Eq. (47). We define it by Eq. (48). We conjecture that wherever C 1 appears in this paper it would be given by Eq. (47) if the Kais function were replaced by any other two-electron 1S eigenfunction of a Hamiltonian with any of a broad class 0f one-electron, central-field potentials. We make no claim to have proved this conjecture, although Hill's analysis constitutes a partial proof. Of course we do claim that wherever C 1, appears in this paper it is given by Eq. (47) in the special case of the Kais function

  51. Edmonds AR (1960) Angular momentum in quantum mechanics. Princeton Univ. Press, Princeton See Eqs. (3.7.17) and (4.6.4)

    Google Scholar 

  52. For a closely related treatment see pp. 1187–1188 and Appendix E in Hill's 1985 paper E11].

  53. Abramowitz M, Stegun IA (1964) Handbook of mathematical functions, NBS Applied Mathematics Series 55, US Gov. Printing Office, Washington, DC. We adopt the notation of Abramowitz and Stegun unless explicitly stated otherwise in the text

    Google Scholar 

  54. The continued fraction formulas (83)–(85) are apparently new, but closely related to a formula attributed to Wallis. See Eq. (6.1.49) in Ref. [53]

  55. Perkins, JF (1968) J Chem Phys 48; 1985. Perkins reports expansions of r 12 k for integral values of k ⩾−1

    Google Scholar 

  56. Piero Decleva, private communication. Contrary to what is stated in the captions to Figs. 4–11 in Ref. [36], the quantites plotted there are partial wave amplitudes multiplied by factors of r 1 r 2

  57. All numerical and nonnumerical computations for this paper were carried out on a small work station, either a Sun/4 with 16 Mbytes of memory or a Silicon Graphics Indy with 32 Mbytes

  58. Polygamma functions are discussed in Sects. 6.4 and 6.8 in Ref. [53]. For a useful asymptotic expansion in terms 0f Bernoulli numbers, see Eq. (6.4.11) and Table 23.2

  59. See pp. 1182–1183 in Hill's 1985 paper [11]

  60. An alternative estimate of the Hill coefficients for the helium atom is C 1 = −a/3 = 0.0247170 and C 2 = −b/4 = 0.00791400 where a and b, obtained by fitting variationally computed energy increments, are reported on p.36 in Ref. [36]. These estimates agree well with the more accurate values reported in Table 10 taken from Ref. [11]

  61. Alternatively one could define Ψ2(1, 1) to be a modified, nonnormalized, density function. Then Hill's C 1 and C 2 coefficients are proportional to the third and fourth moments, respectively, of the corresponding radial distribution function

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, H.F. The electron correlation cusp. Theoret. Chim. Acta 94, 345–381 (1996). https://doi.org/10.1007/BF00186448

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00186448

Key words

Navigation