Skip to main content
Log in

Solar microwave bursts — A review

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

We review the observational and theoretical results on the physics of microwave bursts that occur in the solar atmosphere. We particularly emphasize the advances made in burst physics over the last few years with the great improvement in spatial and time resolution especially with instruments like the NRAO three element interferometer, Westerbork Synthesis Radio Telescope and more recently the Very Large Array (VLA).

We review the observations on pre-flare build-up of an active region at centimeter wavelengths. In particular we discuss the observations that in addition to the active region undergoing brightness and polarization changes on time scales of the order of an hour before a flare, there can be a change of the sense of polarization of a component of the relevant active region situated at the same location as the flare, implying the emergence of a flux of reverse polarity at coronal levels. The intensity distribution of cm-λ bursts is similar to that of soft X-ray and hard X-ray bursts. Indeed, it appears that the flaring behavior of the Sun at cm wavelengths is similar to that of some other cosmic transients such as flare stars and X-ray bursters.

We discuss three distinct phases in the evolution of cm bursts, namely, impulsive phase, post-burst phase, and gradual rise and fall. The radiation mechanism for the impulsive phase of the microwave burst is gyrosynchrotron emission from mildly relativistic electrons that are accelerated near the energy release site and spiral in the strong magnetic field in the low corona. The details of the velocity distribution function of the energetic electrons and its time evolution are not known. We review the spectral characteristics for two kinds of velocity distribution, e.g., Maxwellian and Maxwellian with a power law tail for the energetic electrons. In the post-burst phase the energetic electrons are gradually thermalized. The thermal plasma released in the energy release region as well as the expanded parts of the overheated upper chromosphere may alter the emission mechanism. Thus, in the post-burst phase, depending on the average density and temperature of the thermal plasma, the emission mechanism may change from gyrosynchrotron to collisional bremsstrahlung from a thermal plasma. The gradual rise and fall (GFR) burst represents the heating of a flare plasma to temperatures of the order of 106 K, in association with a flare or an X-ray transient following a filament disruption.

We discuss the flux density spectra of centimeter bursts. The great majority of the bursts have a single spectral maximum, commonly around 6 cm-λ The U-shaped signature sometimes found in cm-dcm burst spectrum of large bursts is believed to a be a reflection of only the fact that there are two different sources of burst radiation, one for cm-λ and the other for dcm-λ, with different electron energy distributions and different magnetic fields.

Observations of fine structures with temporal resolutionof 10–100 ms in the intensity profiles of cm-λ bursts are described. The existence of such fine time structures imply brightness temperatures in burst sources of order 1015 K; their interpretation in terms of gyrosynchrotron measuring or the coherent interaction of upper hybrid waves excited by percipitating electron beams in a flaring loop is discussed.

High spatial resolution observations (a few seconds of arc to ∼ 1″ arc) are discussed, with special reference to the one- and two-dimensional maps of cm burst sources. The dominance of one sense of circular polarization in some weak 6 cm bursts and its interpretation in terms of energetic electrons confined in an asymmetric magnetic loop is discussed. Two-dimensional snapshot maps obtained with the VLA show that multi-peak impulsive 6 cm burst phase radiation originates from several arcades of loops and that the burst source often occupies a substantial portion of the flaring loop, and is not confined strictly to the top of the loop. This phenomenon is interpreted in terms of the trapping of energetic electrons due to anomalous doppler resonance instability and the characteristic scale length of the magnetic field variation along the loop. The VLA observations also indicate that the onset of the impulsive phase of a 6 cm burst can be associated with the appearance of a new system of loops. The presence of two loop systems with opposite polarities or a quadrupole field configuration is reminiscent of flare models in which a current sheet develops in the interface between two closed loops.

We provide an extensive review of the emission and absorption processes in thermal and non-thermal velocity distributions. Unlike the thermal plasma where absorption and emission are inter-related through Kirchoff's law, the radiation emitted from a small population of non-thermal electrons can be reabsorbed from the same electrons (self-absorption) or from the background (thermal) electrons through gyro-resonance absorption, and free-free absorption. We also suggest that the non-thermal electrons can be unstable and these instabilities can be the source of very high brightness temperature, fine structure (∼ 10 ms) pulsations.

Finally in the last part of this review we present several microwave burst models-the magnetic trap model, the two-component model, thermal model and the flaring loop model and give a critical discussion of the strength and weakness of these models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alissandrakis, C. E. and Kundu, M. R.: 1975, Solar Phys. 41, 119.

    Google Scholar 

  • Alissandrakis, C. E. and Kundu, M. R.: 1978, Astrophys. J. 222, 342.

    Google Scholar 

  • Bateman, G.: 1978, MHD Instabilities, MIT Press, Cambridge, Mass.

    Google Scholar 

  • Bekefi, G.: 1966, Radiation Processes in Plasmas, J. Wiley and Sons, Inc., N.Y.

    Google Scholar 

  • Bohme, A., Fürstenberg, R., Hildebrandt, J., Saal, O., Krüger, A., Hoyng, P., and Stevens, G. A.: 1977, Solar Phys. 53, 139.

    Google Scholar 

  • Brown, J. C., Melrose, D. B., and Spicer, D. S.: 1979, Astrophys. J. 228, 592.

    Google Scholar 

  • Brown, J. C., Craig, I. J. B., and Karpen, J. T.: 1980, Solar Phys. 67, 143.

    Google Scholar 

  • Chubb, T. A., Kreplin, R. W., and Friedman, H.: 1966, J. Geophys. Res. 71, 3611.

    Google Scholar 

  • Cohen, M. H.: 1961, Astrophys. J. 133, 978.

    Google Scholar 

  • Crannell, C. J., Frost, K. J., Mätzler, C., Ohki, K., and Saba, J. L.: 1978, Astrophys. J. 223, 620.

    Google Scholar 

  • Datlowe, D. N., Elcan, M. J., and Hudson, H. S.: 1974, Solar Phys. 39, 155.

    Google Scholar 

  • De Jager, C. and Kundu, M. R.: 1963, in W. Friester (ed.), Space Research, III, North-Holland Publishing Co., Amsterdam, Holland, p. 836.

    Google Scholar 

  • Drake, J. F.: 1971, Solar Phys. 16, 152.

    Google Scholar 

  • Drummond, W. E. and Rosenbluth, M. N.: 1960, Phys. Fluid 3, 45.

    Google Scholar 

  • Dulk, G. A., Melrose, D. B., and White, S. M.: 1979, Astrophys. J. 234, 1137.

    Google Scholar 

  • Enome, S., Kakinuma, T., and Tanaka, H.: 1969, Solar Phys. 6, 428.

    Google Scholar 

  • Emslie, A. G. and Brown, J. C.: 1980, Astrophys. J. 237, 1015.

    Google Scholar 

  • Emslie, A. G. and Vlahos, L.: 1980, Astrophys. J. 242, 359.

    Google Scholar 

  • Felli, M., Tofani, G., Fürst, E., and Hirth, W.: 1975, Solar Phys. 42, 377.

    Google Scholar 

  • Frost, K. J.: 1969, Astrophys. J. Letters 158, L159.

    Google Scholar 

  • Fürst, E.: 1971, Solar Phys. 18, 84.

    Google Scholar 

  • Ginzburg, V. L. and Syrovatskii, S. I.: 1965, Ann. Rev. Astron. Astrophys. 3, 297.

    Google Scholar 

  • Gribbens, A. H. and Matthews, P. A.: 1969, Nature 222, 158.

    Google Scholar 

  • Guidice, D. A. and Castelli, J. P.: 1975, Solar Phys. 44, 155.

    Google Scholar 

  • Hachenberg, O. and Wallis, G.: 1961, Z. Astrophys. 52, 42.

    Google Scholar 

  • Heyvaerts, J., Priest, E. R., and Rust, D. M.: 1977, Astrophys. J. 216, 123.

    Google Scholar 

  • Hobbs, R. W., Jordan, S. D., Webster, W. J., Jr., Maran, S. P., and Caulk, H. M.: 1974, Solar Phys. 36, 369.

    Google Scholar 

  • Holman, G. D., Eichler, D., and Kundu, M. R.: 1980, in M. R. Kundu and T. E. Gergely (eds.), ‘Radio Physics of the Sun’, IAU Symp. 86, 457.

  • Holman, G. D., Kundu, M. R., and Papadopoulos, K.: 1982, Astrophys. J., (in press).

  • Hudson, H. S.: 1973, in R. Ramaty and R. G. Stone (eds.), High Energy Phenomena on the Sun, NASA SP-342, p. 257.

  • Janssens, T. J. and White, K. P.: 1970, Solar Phys. 11, 299.

    Google Scholar 

  • Janssens, T. J., White, K. P., and Broussard, R. M.: 1973, Solar Phys. 31, 207.

    Google Scholar 

  • Kadomtsev, B. B. and Pogutse, D. P.: 1968, Soviet. Phys. JEPT. 26, 1146.

    Google Scholar 

  • Kahler, S. W., Krieger, A. S., and Vaiana, G. S.: 1975, Astrophys. J. 199, L57.

    Google Scholar 

  • Kane, S. R.: 1972, Solar Phys. 27, 174.

    Google Scholar 

  • Karpen, J. T.: 1980, Ph.D. dissertation, University of Maryland, and NASA Report 82013.

  • Kattenberg, A.: 1981, Ph.D. dissertation, University of Utrecht, Netherlands.

    Google Scholar 

  • Kaufman, P.: 1968, Solar Phys. 60, 367.

    Google Scholar 

  • Kuijpers, J.: 1974, Solar Phys. 36, 157.

    Google Scholar 

  • Kuijpers, J., Peter von de Post, and Slottje, C.: 1982, Astron. Astrophys., (in press).

  • Kundu, M. R.: 1959, Ann. Astrophys. 22, 1.

    Google Scholar 

  • Kundu, M. R.: 1961, J. Geophys. Res. 60, 4308.

    Google Scholar 

  • Kundu, M. R.: 1963, Space Sci. Rev. 2, 438.

    Google Scholar 

  • Kundu, M. R.: 1965, Solar Radio Astronomy, Interscience, N.Y.

    Google Scholar 

  • Kundu, M. R.: 1980, in M. R. Kundu and T. E. Gergely (eds.), Radio Physics of the Sun, D. Reidel Publ. Co., p. 157.

  • Kundu, M. R.: 1981, ‘Solar Maximum Year’, (Proceedings International Workshop, Simferopol, March 1981), IZMIRAN Moscow 1, 24.

  • Kundu, M. R. and Alissandrakis, C. E.: 1975, Nature 257, 465.

    Google Scholar 

  • Kundu, M. R. and Haddock, F. T.: 1960, Nature 186, 610.

    Google Scholar 

  • Kundu, M. R. and Spencer, C. L.: 1963, Astrophys. J. 137, 572.

    Google Scholar 

  • Kundu, M. R. and Vlahos, L.: 1979, Astrophys. J. 232, 595.

    Google Scholar 

  • Kundu, M. R., Velusamy, T., and Becker, R. H.: 1974a, Solar Phys. 34, 217.

    Google Scholar 

  • Kundu, M. R., Becker, R. H., and Velusamy, T.: 1974b, Solar Phys. 34, 185.

    Google Scholar 

  • Kundu, M. R., Alissandrakis, C. E., and Kahler, S. W.: 1976, Solar Phys. 50, 429.

    Google Scholar 

  • Kundu, M. R., Alissandrakis, C. E., Bregman, J. D., and Hin, A. C.: 1977, Astrophys. J. 213, 278.

    Google Scholar 

  • Kundu, M. R., Schmahl, E. J., and Gerassimenko, M.: 1979, Astron. Astrophys. 82, 265.

    Google Scholar 

  • Kundu, M. R., Bobrowsky, M., and Velusamy, T.: 1981, Astrophys. J. 251, 342.

    Google Scholar 

  • Kundu, M. R., Schmahl, E., and Velusamy, T.: 1982a, Astrophys. J. 253, 963.

    Google Scholar 

  • Kundu, M. R., Schmahl, E., Velusamy, T., and Vlahos, L.: 1982b, Astron. Astrophys. 108, 188.

    Google Scholar 

  • Lacy, C. H., Moffet, T. J., and Evans, D. S.: 1976, Astrophys. J. Suppl. 30, 85.

    Google Scholar 

  • Lang, K. R.: 1974, Solar Phys. 36, 351.

    Google Scholar 

  • Lang, K. R.: 1977, Solar Phys. 52, 63.

    Google Scholar 

  • Liu, C. S. and Mok, Y. C.: 1977, Phys. Rev. Letters 38, 162.

    Google Scholar 

  • Liu, C. S., Mok, Y. C., Papadopoulos, K., Englemann, F., and Barmatici, M.: 1977, Phys. Rev. Letters 59, 701.

    Google Scholar 

  • Lewin, W. H. G. et al.: 1976, Astrophys. J. Letters 207, L95.

    Google Scholar 

  • Low, B. C.: 1981, Astrophys. J. 251, 352.

    Google Scholar 

  • Manheimer, W. M.: 1977, Phys. Fluids 20, 265.

    Google Scholar 

  • Marsh, K. A. and Hurford, G. J.: 1980, Astrophys. J. Letters 240, L111.

    Google Scholar 

  • Marsh, K. A., Zirin, H., and Hurford, G. J.: 1979, Astrophys. J. 228, 610.

    Google Scholar 

  • Marsh, K. A., Hurford, G. J., and Zirin, H.: 1980, in M. R. Kundu and T. E. Gergely (eds.), ‘Radiophysics of the Sun’, IAU Symp. 86, 191.

  • Mätzler, C.: 1978, Astron. Astrophys. 70, 181.

    Google Scholar 

  • Melrose, D. B. and Dulk, G. A.: 1982, Astrophys. J. (submitted).

  • Pallavicini, R. and Vaiana, G. S.: 1976, Solar Phys. 49, 297.

    Google Scholar 

  • Papadopoulos, K.: 1977, Rev. Geophys. Res. 15, 173.

    Google Scholar 

  • Parker, E. N.: 1977, Ann. Rev. Astron. Astrophys. 15, 45.

    Google Scholar 

  • Parks, G. K. and Winkler, J. R.: 1966, Solar Phys. 16, 186.

    Google Scholar 

  • Petrosian, V.: 1982, Astrophys. J. Letters, in press.

  • Ramaty, R.: 1969, Astrophys. J. 158, 753.

    Google Scholar 

  • Ramaty, R.: 1973, in R. Ramaty and R. G. Stone (eds.), High Energy Phenomena on the Sun, NASA SP-342.

  • Ramaty, R. and Petrosian, V.: 1972, Astrophys. J. 178, 241.

    Google Scholar 

  • Rosenberg, H.: 1971, in R. Howard (ed.), ‘Solar Magnetic Fields’, IAU Symp. 43, 652.

  • Rosner, R. and Vaiana, G. S.: 1978, Astrophys. J. 222, 1104.

    Google Scholar 

  • Rust, D. M.: 1977, in C. F. Kennel, L. J. Lanzerotti, and E. N. Parker (eds.), Solar System Plasma Physics, North-Holland Publ. Co., p. 51.

  • Sharma, R. R., Vlahos, L., and Papadopoulos, K. A.: 1982, Astron. Astrophys. (in press).

  • Sheeley, N. R. et al.: 1975, Solar Phys. 45, 377.

    Google Scholar 

  • Slottje, C.: 1978, Nature 257, 250.

    Google Scholar 

  • Smerd, S. F.: 1950, Australian J. Sci. Res. 43, 34.

    Google Scholar 

  • Somov, B.: 1979, Solar Phys. 60, 315.

    Google Scholar 

  • Spangler, S. R. and Shawhan, S. D.: 1974, Solar Phys. 37, 189.

    Google Scholar 

  • Spicer, D. S.: 1981, Solar Phys. 71, 115.

    Google Scholar 

  • Stenflo, J. O.: 1973, Solar Phys. 32, 41.

    Google Scholar 

  • Sturrock, P. A. (ed.): 1980, Solar Flares-A Monograph from Skylab Solar Workshop II, Boulder, University of Colorado Press.

    Google Scholar 

  • Švestka, Z.: 1976, Solar Flares, D. Reidel Publ. Co., Dordrecht, Holland.

    Google Scholar 

  • Tanaka, H.: 1961, Proc. Res. Inst. Atmosph. Nagoya. Univ. Japan 8, 51.

    Google Scholar 

  • Takakura, T.: 1962, J. Phys. Soc. Japan, Suppl. A-II, 17, 243.

    Google Scholar 

  • Takakura, T.: 1969, Solar Phys. 6, 133.

    Google Scholar 

  • Takakura, T.: 1972, Solar Phys. 26, 151.

    Google Scholar 

  • Takakura, T.: 1973, in R. Ramaty and R. G. Stone (eds.), High Energy Phenomena on the Sun, NASA SP-342, 179.

  • Takakura, T. and Kai, K.: 1966, Publ. Astron. Soc. Japan 18, 57.

    Google Scholar 

  • Tanaka, H. and Kakinuma, T.: 1962, J. Phys. Soc. Japan, Suppl. A-II, 17, 211.

    Google Scholar 

  • Turbnikov, B. V.: 1958, Soviet Phys. Dokl. 3, 136.

    Google Scholar 

  • Van Hoven, G.: 1979, Astrophys. J. 232, 572.

    Google Scholar 

  • Velusamy, T. and Kundu, M. R.: 1982, Astrophys. J. (July 15).

  • Vlahos, L.: 1979, Ph.D. Dissertation, University of Maryland, College Park.

    Google Scholar 

  • Vlahos, L.: 1980, in M. R. Kundu and T. E. Gergely (eds.), ‘Radio Physics of the Sun’, IAU Symp. 86, 173.

  • Vlahos, L. and Papadopoulos, K.: 1979, Astrophys. J. 233, 717.

    Google Scholar 

  • Vlahos, L., Sharma, R. R., and Papapdopoulos, K.: 1982, University of Maryland, preprint, AP82-010.

  • Vorpahl, J. A., Gibson, E. G., Landecker, P. B., McKenzie, D. L., and Underwood, J. H.: 1975, Solar Phys. 45, 199.

    Google Scholar 

  • Young, C. W., Spencer, C. L., Moreton, G. E., and Roberts, J. A.: 1961, Astrophys. J. 133, 243.

    Google Scholar 

  • Zheleznyakov, V. V.: 1970, Radio Emission of the Sun and Planets, Pergamon Press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kundu, M.R., Vlahos, L. Solar microwave bursts — A review. Space Sci Rev 32, 405–462 (1982). https://doi.org/10.1007/BF00177449

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00177449

Keywords

Navigation