Skip to main content
Log in

Population models for diseases with no recovery

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

An SI epidemic model with a general shape of density-dependent mortality and incidence rate is studied. The asymptotic behaviour is global convergence to an endemic equilibrium, above a threshold, and to a disease-free equilibrium, below the threshold. The effect of vaccination is then examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, R. M.: Directly transmitted viral and bacterial infections of man. In: Anderson, R. M. (ed.) Population dynamics of infectious diseases, pp. 1–37. London: Chapman and Hall 1982

    Google Scholar 

  2. Anderson, R. M., Jackson, H. C., May, R. M., Smith, A. M.: Population dynamics of fox rabies in Europe. Nature 289, 765–771 (1981)

    Google Scholar 

  3. Anderson, R. M., May, R. M.: Regulation and stability of host-parasite population interactions. J. Anim. Ecol. 47, 219–247 (1978)

    Google Scholar 

  4. Anderson, R. M., May, R. M.: Population biology of infectious diseases, I. Nature 280, 361–367 (1979)

    Google Scholar 

  5. Andreasen, V.: Disease regulation of age-structured host populations. Theor. Popul. Biol., in press (1989)

  6. Brauer, F.: Epidemic models in populations of varying size. In: Castillo-Chavez, C., Levin, S. A., Shoemaker C. (eds.) Mathematical approaches to ecological and environmental problem solving. (Lect. Notes. Biomath., in press) Berlin Heidelberg New York: Springer 1989

    Google Scholar 

  7. Bruaer, F.: Models for the spread of universally fatal diseases (manuscript)

  8. Brauer, F.: Some infectious disease models with population dynamics and general contact rates (manuscript)

  9. Busenberg, S., Cooke, K. L., Pozio, M. A.: Analysis of a model of a vertically transmitted disease. J. Math. Biol. 17, 305–329 (1983)

    Google Scholar 

  10. Castillo-Chavez, C., Cooke, K. L., Huang, W., Levin, S. A.: On the role of long incubation periods in the dynamics of acquired immunodeficiency syndrome (AIDS). Part 1: Single population models. J. Math. Biol. 27, 373–398 (1989)

    Google Scholar 

  11. Getz, W. M., Pickering, J.: Epidemic models: thresholds and population regulation. Am. Nat. 121, 892–898 (1983)

    Google Scholar 

  12. Hastings, A.: Global stability of two species systems. J. Math. Biol. 5, 399–403 (1978)

    Google Scholar 

  13. Liu, W. M., Hethcote, H. W., Levin, S. A.: Dynamical behavior of epidemiological models with nonlinear incidence rates. J. Math. Biol. 25, 359–380 (1987)

    Google Scholar 

  14. Liu, W. M., Levin, S. A., Iwasa, Y.: Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models. J. Math. Biol. 23, 187–204 (1986)

    Google Scholar 

  15. May, R. M., Anderson, R. M., McLean, A. R.: Possible demographic consequences of HIV/AIDS epidemics. Math. Biosci. 90, 475–505 (1988)

    Google Scholar 

  16. Ye, Yan-Qian: Theory of limit cycles. Providence: Am. Math. Soc. 1986

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pugliese, A. Population models for diseases with no recovery. J. Math. Biol. 28, 65–82 (1990). https://doi.org/10.1007/BF00171519

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00171519

Key words

Navigation