Skip to main content
Log in

Potential and limitations of current concepts regarding the response of clonal plants to environmental heterogeneity

  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

Plant ecologists have spent considerable effort investigating the physiological mechanisms and ecological consequences of clonal growth in plants. One line of research is concerned with the response of clonal plants to environmental heterogeneity. Several concepts and hypotheses have been formulated so far, suggesting that intra-clonal resource translocation, morphological plasticity on different organizational levels (e.g. leaves, ramets, fragments), and other features of clonal plants may represent potentially adaptive traits enabling stoloniferous and rhizomatous species to cope better with habitat patchiness. Although each of these concepts contributes substantially to our understanding of the ecology of clonal species, it is difficult to combine them into a consistent theoretical framework. This apparent lack of conceptual coherence seems partly be caused by an uncritical use of the term ‘habitat heterogeneity’. Researchers have not always acknowledged the fact that ‘heterogeneity’ may refer to a number of fundamentally different aspects of environmental variability (i.e. scale, contrast, predictability, temporal vs. spatial heterogeneity), and that each of these aspects may, on one hand, allow for the evolution of specific plant responses to heterogeneity and, on the other, severely constrain the viability of potentially adaptive traits. Since adaptive responses are operational only in a narrow range of conditions (delimited by external environmental conditions and constraints internal to plants) it seems imperative to clearly define the context and the limits within which concepts regarding clonal plants' responses to heterogeneity are valid. In this paper an attempt is made to review a number of these concepts and to try and identify the necessary conditions for them to be operational. Special attention is paid (1) to different aspects of environmental heterogeneity and how they may affect clonal plants, and (2) to possible constraints (e.g. sectoriality, perception of environmental signals, morphological plasticity) on plant responses to patchiness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Addicott J. F., Aho J. M., Antolin M. F., Padilla D. K., Richardson J. S. & Soluk D. A. 1987. Ecological neighborhoods: scaling environmental patterns. Oikos 49: 340–346.

    Google Scholar 

  • Alpert P & Mooney H. A. 1996. Resource heterogeneity generated by shrubs and topography on coastal sand dunes. Vegetatio 122: 83–93.

    Google Scholar 

  • Alpert P. 1991. Nitrogen sharing among ramets increases clonal growth in Fragaria chiloensis. Ecology 72: 69–80.

    Google Scholar 

  • Alpert P. & Mooney H. A. 1986. Resource sharing among ramets in the clonal herb, Fragaria chiloensis. Oecologia 70: 227–233.

    Google Scholar 

  • Antonovics J. & Levin D. A. 1980. The ecological and genetic consequences of density-dependent regulation in plants. Ann. Rev. Ecol. Syst. 11: 411–452.

    Google Scholar 

  • Aphalo P. J. & Ballaré C. L. 1995. On the importance of information-acquiring systems in plant-plant interactions. Funct. Ecol. 9: 5–14.

    Google Scholar 

  • Baldocchi D. & Collineau S. 1994. The physical nature of solar radiation in heterogeneous canopies: spatial and temporal attributes. Pp. 21–71. In: Caldwell M. M. & Pearcy R. W. (eds), Exploitation of environmental heterogeneity by plants. Academic Press, London.

    Google Scholar 

  • Ballaré C. L. 1994. Light gaps: sensing the light opportunities in highly dynamic canopy environments. Pp. 73–110. In: Caldwell M. M. & Pearcy R. W. (eds), Exploitation of environmental heterogeneity by plants. Academic Press, London.

    Google Scholar 

  • Bertness M. D., Gough L. & Shumway S. W. 1992. Salt tolerance and the distribution of vascular plants in a New England salt marsh. Ecology 73: 1842–1851.

    Google Scholar 

  • Birch C. P. D. & Hutchings M. J. 1994. Exploitation of patchily distributed soil resources by the clonal herb Glechoma hederacea. J. Ecol. 82: 653–664.

    Google Scholar 

  • Cain M. L. 1994. Consequences of foraging in clonal plant species. Ecology 75: 933–944.

    Google Scholar 

  • Caldwell M. M. 1994. Exploiting nutrients in fertile soil microsites. Pp. 325–347. In: Caldwell M. M. & Pearcy R. W. (eds), Exploitation of environmental heterogeneity by plants. Academic Press, London.

    Google Scholar 

  • Caldwell M. M. & Pearcy R. W. (eds) 1994. Exploitation of environmental heterogeneity by plants. Academic Press, London.

    Google Scholar 

  • Callaghan T. V. 1976. Growth and population dynamics of Carex bigelowii in an alpine environment. Oikos 27: 402–413.

    Google Scholar 

  • Callaghan T. V. 1977. Adaptive strategies in the life cycles of South Georgian graminoid species. Pp. 981–1002. In: Llano G. A. (ed.), Adaptations within Antarctic ecosystems. Smithsonian Inst. Washington.

    Google Scholar 

  • Callaghan T. V. 1988. Physiological integration and demographic implications of modular construction in cold environments. Pp. 111–135. In: Davy A. J., Hutchings M. J. & Watkinson A. R. (eds), Plant population biology. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Callaghan T. V., Carlsson B. Å., Jónsdóttir I. S., Svensson B. M. & Jonasson S. 1992. Clonal plants and environmental change: introduction to the proceedings and summary. Oikos 63: 341–347.

    Google Scholar 

  • Campbell B. D., Grime J. P. & Mackey J. M. L. 1991. A trade-off between scale and precision in resource foraging. Oecologia 87: 532–538.

    Google Scholar 

  • Caraco T. & Kelly C. K. 1991. On the adaptive value of physiological integration in clonal plants. Ecology 72: 81–93.

    Google Scholar 

  • Chapman D. F., Robson M. J. & Snaydon R. W. 1991a. The influence of leaf position and defoliation on the assimilation and translocation of carbon in white clover (Trifolium repens L.). I. Carbon distribution patterns. Ann. Bot. 67: 295–302.

    Google Scholar 

  • Chapman D. F., Robson M. J. & Snaydon R. W. 1991b. The influence of leaf position and defoliation on the assimilation and translocation of carbon in white clover (Trifolium repens L.). 2. Quantitative carbon movement. Ann. Bot. 67: 303–308.

    Google Scholar 

  • Chapman D. F., Robson M. J. & Snaydon R. W. 1992. Physiological integration in the perennial herb Trifolium repens L. Oecologia 89: 338–347.

    Google Scholar 

  • de Kroon, H. 1990. In search of a foraging plant. The clonal growth of Brachypodium pinnatum and Carex flacca. Ph. D. Dissertation, Utrecht University. 107p.

  • deKroon H. & Hutchings M. J. 1995. Morphological plasticity in clonal plants: the foraging concept reconsidered. J. Ecol. 83: 143–152.

    Google Scholar 

  • deKroon H., Stuefer J. F., Dong M. & During H. J. 1994. On plastic and non-plastic variation in clonal plant morphology and its ecological significance. Folia Geobot. Phytotax. 29: 123–138.

    Google Scholar 

  • de Kroon, H., van der Zalm, E., van Rheenen, J. W. A., van Dijk, A. & Kreulen, R. (submitted). The interaction between water and nutrient translocation in a rhizomatous sedge (Carex flacca).

  • deKroon H. & vanGroenendaal J. 1990. Regulation and function of clonal growth in plants: an evaluation. Pp. 177–186. In: vanGroenendael J. & deKroon H. (eds), Clonal growth in plants: regulation and function. SPB Academic Publishing, The Hague.

    Google Scholar 

  • Diaz Barradas M. C., During H. J. & Terlou M. 1992. The structure of bryophyte communities in the dunes of Meijendel, Netherlands. Pp. 313–323. In: Carter R. W. G., Curtis T. G. F. & Sheehy-Skeffington M. J. (eds), Coastal dunes. Geomorphology, ecology and management for conservation. Balkema, Rotterdam.

    Google Scholar 

  • Dong M. 1993. Morphological plasticity of the clonal herb Lamiastrum galeobdolon (L.) Ehrend. & Polatschek in response to partial shading. New Phytol. 124: 291–300.

    Google Scholar 

  • Dong, M. 1994. Foraging through morphological plasticity in clonal herbs. Ph. D. Dissertation, Utrecht University. 96 p.

  • Dong M. 1995. Morphological responses to local light conditions in clonal herbs from contrasting habitats, and their modification due to physiological integration. Oecologia 101: 282–288.

    Google Scholar 

  • Dong M. & deKroon H. 1994. Plasticity in morphology and biomass allocation in Cynodon dactylon, a grass forming stolons and rhizomes. Oikos 70: 99–106.

    Google Scholar 

  • Dormer K. J. 1972. Shoot organization in vascular plants. Chapman & Hall. London.

    Google Scholar 

  • Drew M. C. & Saker L. R. 1975. Nutrient supply and the growth of the seminal root system in barley. II. Localized, compensatory increase in lateral root growth and rates of nitrate uptake when nitrate supply is restricted to only part of the root system. J. Exper. Bot. 26: 79–90.

    Google Scholar 

  • During H. J. & Lloret F. 1996. Permanent grid studies in bryophyte communities. 1. Pattern and dynamics of individual species. J. Hattori Bot. Lab. 79: 1–41.

    Google Scholar 

  • Eriksson O. 1986. Mobility and space capture in the stoloniferous plant Potentilla anserina. Oikos 46: 82–87.

    Google Scholar 

  • Eriksson O. & Jerling L. 1990. Hierarchical selection and risk spreading in clonal plants. Pp. 79–94. In: vanGroenendael J. & deKroon H. (eds), Clonal growth in plants: regulation and function. SPB Academic Publishing, The Hague.

    Google Scholar 

  • Evans J. P. 1988. Nitrogen translocation in a clonal dune perennial, Hydrocotyle bonariensis. Oecologia 77: 64–68.

    Google Scholar 

  • Evans J. P. 1991. The effect of resource integration on fitness related traits in a clonal dune perennial, Hydrocotyle bonariensis. Oecologia 86: 268–275.

    Google Scholar 

  • Evans J. P. 1992. The effect of local resource availability and clonal integration on ramet functional morphology in Hydrocotyle bonariensis. Oecologia 89: 265–276.

    Google Scholar 

  • Evans J. P. & Whitney S. 1992. Clonal integration across a salt gradient by a non-halophyte, Hydrocotyle bonariensis (Apiaceae). Amer. J. Bot. 79: 1344–1347.

    Google Scholar 

  • Fitter A. H. 1994. Architecture and biomass allocation as components of the plastic response of root systems to soil heterogeneity. Pp. 305–323. In: Caldwell M. M. & Pearcy R. W. (eds), Exploitation of environmental heterogeneity by plants. Academic Press, London.

    Google Scholar 

  • Fliervoet L. M. & Werger M. J. A. 1984. Canopy structure and microclimate of two wet grassland communities. New Phytol. 96: 115–130.

    Google Scholar 

  • Fowler N. 1988. The effects of environmental heterogeneity in space and time on the regulation of populations and communities. Pp. 249–269. In: Davy A. J., Hutchings M. J. & Watkinson A. R. (eds), Plant population ecology. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Friedman D. & Alpert P. 1991. Reciprocal transport between ramets increases growth of Fragaria chiloensis when light and nitrogen occur in separate patches but only if patches are rich. Oecologia 86: 76–80.

    Google Scholar 

  • Gifford E. M. & Foster A. S. 1989. Morphology and evolution of vascular plants. Freeman & Co., New York.

    Google Scholar 

  • Grime J. P. 1979. Plant strategies and vegetation processes. Wiley & Sons, Chichester.

    Google Scholar 

  • Grime J. P., Crick J. C. & Rincon J. E. 1986. The ecological significance of plasticity. Pp. 4–29. In: Jennings D. H. & Trewavas A. J. (eds), Plasticity in plants. Cambridge University Press, Cambridge.

    Google Scholar 

  • Gross K. L., Pregitzer K. S. & Burton A. J. 1995. Spatial variation in nitrogen availability in three successional plant communities. J. Ecol. 83: 357–367.

    Google Scholar 

  • Harper J. L. 1985. Modules, branches, and the capture of resources. Pp. 1–33. In: Jackson J. B. C., Buss L. W. & Cook R. E. (eds), Population biology and evolution of clonal organisms. Yale University Press, New Haven.

    Google Scholar 

  • Hartnett D. C. & Bazzaz F. A. 1983. Physiological integration among intraclonal ramets in Solidago canadensis. Ecology 64: 779–788.

    Google Scholar 

  • Herben T., During H. J. & Krahulec F. 1995. Spatiotemporal dynamics in mountain grasslands; species autocorrelations in space and time. Folia Geobot. Phytotax. 30: 185–196.

    Google Scholar 

  • Herben T., Hara T., Marshall C. & Soukupová L. 1994. Plant clonality: biology and diversity. Folia Geobot. Phytotax. 29: 113–122.

    Google Scholar 

  • Hirose T. & Werger M. J. A. 1995. Canopy structure and photon flux partitioning among species in a herbaceous plant community. Ecology 76: 466–474.

    Google Scholar 

  • Huber, H. 1996. Plasticity of internodes and petioles in prostrate and erect Potentilla species. Funct. Ecol. 10, in press.

  • Hutchings M. J. & deKroon H. 1994. Foraging in plants: the role of morphological plasticity in resource acquisition. Adv. Ecol. Res. 25: 159–238.

    Google Scholar 

  • Hutchings M. J. & Slade A. J. 1988. Morphological plasticity, foraging and integration in clonal perennial herbs. Pp. 83–109. In: Davy A. J., Hutchings M. J. & Watkinson A. R. (eds), Plant population biology. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Jackson J. B. C., Buss L. W. & Cook R. E. (eds) 1985. Population biology and evolution of clonal organisms. Yale University Press, New Haven.

    Google Scholar 

  • Jackson R. B., Manwaring J. H. & Caldwell M. M. 1990. Rapid physiological adjustment of roots to localized soil enrichment. Nature 344: 58–60.

    Google Scholar 

  • Jones M. 1985. Modular demography and form in silver birch. Pp. 223–237. In: White J. (ed), Studies on plant demography. A Festschrift for John L. Harper. Academic Press, London.

    Google Scholar 

  • Jones M. & Harper J. L. 1987a. The influence of neighbours on the growth of trees. I. The demography of buds in Betula pendula. Proc. Roy. Soc. Lond., Ser. B, 232: 1–18.

    Google Scholar 

  • Jones M. & Harper J. L. 1987a. The influence of neighbours on the growth of trees. II. The fate of buds on long and short shoots in Betula pendula. Proc. Roy. Soc. Lond., Series B, 232: 19–33.

    Google Scholar 

  • Jónsdóttir, I. S. 1989. The population dynamics, intraclonal physiology and grazing tolerance of Carex bigelowii. PhD Dissertation. Lund University, 86p.

  • Jónsdóttir I. S. & Callaghan T. V. 1988. Interrelationships between different generations of interconnected tillers of Carex bigelowii. Oikos 52: 120–128.

    Google Scholar 

  • Jónsdóttir I. S. & Callaghan T. V. 1989. Localized defoliation stress and the movement of 14C-photoassimilates between tillers of Carex bigelowii. Oikos 54: 211–219.

    Google Scholar 

  • Jónsdóttir I. S. & Callaghan T. V. 1990. Intraclonal translocation of ammonium and nitrate in Carex bigelowii using 15N and nitrate reductase assays. New Phytol. 114: 419–428.

    Google Scholar 

  • Kelly V. R. & Canham C. D. 1992. Resource heterogeneity in oldfields. J. Veg. Sci. 3: 545–552.

    Google Scholar 

  • Kemball W. D. & Marshall C. 1995. Clonal integration between parent and branch stolon in white clover: a developmental study. New Phytol. 129: 513–521.

    Google Scholar 

  • Kolasa J. & Rollo C. D. 1991. The heterogeneity of heterogeneity: a glossary. Pp. 1–23. In: Kolasa J. & Pickett S. T. A. (eds), Ecological heterogeneity. Springer, New York.

    Google Scholar 

  • Kotliar N. B. & Wiens J. A. 1990. Multiple scale of patchiness and patch structure: a hierarchical framework for the study of heterogeneity. Oikos 59: 253–260.

    Google Scholar 

  • Lau R. R. & Young D. R. 1988. Influence of physiological integration on survivorship and water relations in a clonal herb. Ecology 69: 215–219.

    Google Scholar 

  • Lee J. A. & Stewart G. R. 1978. Ecological aspects of nitrogen assimilation. Adv. Bot. Res. 6: 1–43.

    Google Scholar 

  • Levin S. A. 1992. The problem of pattern and scale in ecology. Ecology 73: 1943–1967.

    Google Scholar 

  • Li H. & Reynolds J. F. 1994. A simulation experiment to quantify spatial heterogeneity in categorical maps. Ecology 75: 2446–2455.

    Google Scholar 

  • Li H. & Reynolds J. F. 1995. On definition and quantification of heterogeneity. Oikos 73: 280–284.

    Google Scholar 

  • Miller R. E., VerHoef J. M. & Fowler N. L. 1995. Spatial heterogeneity in eight central Texas grasslands. J. Ecol. 83: 919–928.

    Google Scholar 

  • Marshall C. 1990. Source-sink relations of interconnected ramets. Pp. 23–41. In: vanGroenendael J. & deKroon H. (eds), Clonal growth in plants: regulation and function. SPB Academic Publishing, The Hague.

    Google Scholar 

  • Novoplansky A., Cohen D. & Sachs T. 1990. How Portulaca seedlings avoid their neighbours. Oecologia 82: 490–493.

    Google Scholar 

  • Oborny B. 1994a. Growth rules in clonal plants and environmental predictability — a simulation study. J. Ecol. 82: 341–351.

    Google Scholar 

  • Oborny B. 1994b. Spacer length in clonal plants and the efficiency of resource capture in heterogeneous environments: a Monte Carlo simulation. Folia Geobot. & Phytotax. 29: 139–158.

    Google Scholar 

  • Oborny B. & Podani J. (eds) 1995. Clonality in plant communities. Opulus Press, Uppsala.

    Google Scholar 

  • Pate J. S. 1980. Transport and partitioning of nitrogenous solutes. Ann. Rev. Pl. Phys. 31: 313–340.

    Google Scholar 

  • Pate J. S. 1983. Patterns of nitrogen metabolism in higher plants and their ecological significance. Pp. 225–255. In: Lee J. A., McNeill S. & Rorison I. H. (eds), Nitrogen as an ecological factor. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Pearcy R. W. & Sims D. A. 1994. Photosynthetic acclimation to changing light environments: scaling from the leaf to the whole plant. Pp. 145–174. In: Caldwell M. M. & Pearcy R. W. (eds), Exploitation of environmental heterogeneity by plants. Academic Press, London.

    Google Scholar 

  • Pearcy R. W., Chazdon R. L., Gross L. J. & Mott K. A. 1994. Photosynthetic utilization of sunflecks: a temporally patchy resource on a time scale of seconds to minutes. Pp. 175–208. In: Caldwell M. M. & Pearcy R. W. (eds), Exploitation of environmental heterogeneity by plants. Academic Press, London.

    Google Scholar 

  • Peoples M. B. & Gifford R. M. 1990. Long-distance transport of nitrogen and carbon from sources to sinks in higher plants. Pp. 434–447. In: Dennis D. T. & Turpin D. H. (eds), Plant physiology, biochemistry and molecular biology. Longman, Harlow.

    Google Scholar 

  • Pitelka L. F. & Ashmun J. W. 1985. Physiology and integration of ramets in clonal plants. Pp. 399–435. In: Jackson J. B. C., Buss L. W. & Cook R. E. (eds), Population biology and evolution of clonal organisms. Yale University Press, New Haven.

    Google Scholar 

  • Price E. A. C. & Hutchings M. J. 1992a. The causes and developmental effects of integration and independence between different parts of Glechoma hederacea clones. Oikos 63: 376–386.

    Google Scholar 

  • Price E. A. C. & Hutchings M. J. 1992b. Studies of growth in the clonal herb Glechoma hederacea. II. The effects of selective defoliation. J. Ecol. 80: 39–47.

    Google Scholar 

  • Price E. A. C., Marshall C. & Hutchings M. J. 1992. Studies of growth in the clonal herb Glechoma hederacea. I. Patterns of physiological integration. J. Ecol. 80: 25–38.

    Google Scholar 

  • Robertson G. P. & Gross K. L. 1994. Assessing the heterogeneity of belowground resources: quantifying pattern and scale. Pp. 237–253. In: Caldwell M. M. & Pearcy R. W. (eds), Exploitation of environmental heterogeneity by plants. Academic Press, London.

    Google Scholar 

  • Robinson D. 1994. The response of plants to non-uniform supplies of nutrients. New Phytol. 127: 635–674.

    Google Scholar 

  • Salzman A. G. 1985. Habitat selection in a clonal plant. Science 228: 603–604.

    Google Scholar 

  • Salzman A. G. & Parker M. A. 1985. Neighbors ameliorate local salinity stress for a rhizomatous plant in a heterogeneous environment. Oecologia 65: 273–277.

    Google Scholar 

  • Scheiner S. M. 1993. Genetics and evolution of phenotypic plasticity. Ann. Rev. Ecol. Syst. 24: 35–68.

    Google Scholar 

  • Schulze E.-D. & Hall A. E. 1981. Stomatal responses, water loss and CO2 assimilation rates of plants in contrasting environments. Encycl. Pl. Phys., New Series, 12B: 181–230.

    Google Scholar 

  • Shorrocks B. & Swingland R. (eds) 1990. Living in a patchy environment. Oxford University Press, Oxford.

    Google Scholar 

  • Shumway S. W. 1995. Physiological integration among clonal ramets during invasion of disturbance patches in a New England salt marsh. Ann. Bot. 76: 225–233.

    Google Scholar 

  • Silvertown J. & Smith B. 1988. Gaps in the canopy: the missing dimension in vegetation dynamics. Vegetatio 77: 57–60.

    Google Scholar 

  • Silvertown J. & Smith B. 1989. Mapping the microenvironment for seed germination in the field. Ann. Bot. 63: 163–167.

    Google Scholar 

  • Silvertown J., Prince S. D. & Smith B. 1988. A field-portable instrument for mapping the micro environment within grass canopies. Funct. Ecol. 2: 263–268.

    Google Scholar 

  • Slade A. J. & Hutchings M. J. 1987a. An analysis of the costs and benefits of physiological integration between ramets in the clonal perennial herb Glechoma hederacea. Oecologia 73: 425–431.

    Google Scholar 

  • Slade A. J. & Hutchings M. J. 1987b. The effect of nutrient availability on foraging in the clonal herb Glechoma hederacea. J. Ecol. 75: 95–112.

    Google Scholar 

  • Solangaarachchi S. M. & Harper J. L. 1989. The growth and asymmetry of neighbouring plants of white clover (Trifolium repens L.). Oecologia 78: 208–213.

    Google Scholar 

  • Steeves T. A. & Sussex I. M. 1989. Patterns in plant development. 2nd edition. Cambridge University Press, Cambridge.

    Google Scholar 

  • Strasburger E. 1991. Lehrbuch der Botanik. 33rd edition. G. Fischer, Stuttgart.

    Google Scholar 

  • Stuefer J. F. 1996. Separating the effects of assimilate and water integration in clonal fragments by the use of steam-girdling. Abstr. Bot. 19: 75–81.

    Google Scholar 

  • Stuefer, J. F., de Kroon, H. & During, H. J. 1996. Exploitation of environmental heterogeneity by spatial division of labour in a clonal plant. Funct. Ecol. 10, in press.

  • Stuefer J. F., During H. J. & deKroon H. 1994. High benefits of clonal integration in two stoloniferous species, in response to heterogeneous light environments. J. Ecol. 82: 511–518.

    Google Scholar 

  • Stuefer J. F. & Hutchings M. J. 1994. Environmental heterogeneity and clonal growth: a study of the capacity for reciprocal translocation in Glechoma hederacea L. Oecologia 100: 302–308.

    Google Scholar 

  • Sutherland W. J. & Stillman R. A. 1988. The foraging tactics of plants. Oikos 52: 239–244.

    Google Scholar 

  • Tuomi J. & Vuorisalo T. 1989a. Hierarchical selection in modular organisms. Tr. Ecol. Evol. 4: 209–213.

    Google Scholar 

  • Tuomi J. & Vuorisalo T. 1989b. What are the units of selection in modular organisms? Oikos 54: 227–233.

    Google Scholar 

  • Upton G. J. G. & Fingleton B. 1985. Spatial data analysis by example. I. Point pattern and quantitative data. Wiley & Sons, Chichester.

    Google Scholar 

  • Upton G. J. G. & Fingleton B. 1989. Spatial data analysis by example. II. Categorical and directional data. Wiley & Sons, Chichester.

    Google Scholar 

  • vanGroenendael J. & deKroon H. (eds) 1990. Clonal growth in plants: regulation and function. SPB Academic Publishing, The Hague.

    Google Scholar 

  • Waite S. 1994. Field evidence of plastic growth responses to habitat heterogeneity in the clonal herb Ranunculus repens. Ecol. Res. 9: 311–316.

    Google Scholar 

  • Watson M. A. 1984. Developmental constraints: effect on population growth and patterns of resource allocation in a clonal plant. Amer. Nat. 123: 411–426.

    Google Scholar 

  • Watson M. A. & Casper B. B. 1984. Morphogenetic constraints on patterns of carbon distribution in plants. Ann. Rev. Ecol. Syst. 15: 233–258.

    Google Scholar 

  • Wiens J. A. 1976. Population responses to patchy environments. Ann. Rev. Ecol. Syst. 7: 81–120.

    Google Scholar 

  • Wiens J. A. 1989. Spatial scaling in ecology. Funct. Ecol. 3: 385–397.

    Google Scholar 

  • Wiens J. A. 1990. On the use of ‘grain’ and ‘grain size’ in ecology. Funct. Ecol. 4: 720.

    Google Scholar 

  • Wijesinghe D. K. & Handel S. N. 1994. Advantages of clonal growth in heterogeneous habitats: an experiment with Potentilla simplex. J. Ecol. 82: 495–502.

    Google Scholar 

  • Young D. R. & Smith W. K. 1979. Influence of sunflecks on the temperature and water relations of two subalpine understorey congeners. Oecologia 43: 195–205.

    Google Scholar 

  • Young D. R. & Smith W. K. 1980. Influence of sunlight on photosynthesis, water relations, and leaf structure in the understorey species Arnica cordifolia. Ecology 61: 1380–1390.

    Google Scholar 

  • Zimmermann M. H. & Tomlinson P. B. 1972. The vascular construction of monocotyledonous stems. Bot. Gaz. 133: 141–155.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stuefer, J.F. Potential and limitations of current concepts regarding the response of clonal plants to environmental heterogeneity. Vegetatio 127, 55–70 (1996). https://doi.org/10.1007/BF00054847

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00054847

Key words

Navigation