Skip to main content
Log in

Perspectives on the ecomorphology of bony fishes

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Synopsis

The field of ecomorphology has a long history with early roots in Europe. In this half of the century the application of ecomorphology to the biology of fishes has developed in the former Soviet Union, Poland and Czechoslovakia, The Netherlands, and in North America. While the specific approaches vary among countries, many North American studies begin by comparing morphological variation with variation in ecological characteristics at the intra or interspecific levels. These initial correlative studies form the ground work for hypotheses that explore the mechanistic underpinnings of the observed ecomorphological associations. Supporting these mechanistic hypotheses are insights from functional studies which demonstrate the limits to potential resource use resulting from a particular morphology; however, the actual resource use is likely to be more limited due to additional constraints provided by internal (e.g., behavior, physiology) and external (e.g., resource abundance, predator distribution) factors. The results from performance studies in the laboratory or field can be used to test specific ecomorphological hypotheses developed from the initial correlational and functional studies. Such studies may, but rarely do, incorporate an ontogenetic analysis of the ecomorphological association to determine their effect on performance. Finally, input from phylogenetic analyses allow an investigator to examine the evolution of specific features and to assess the rates and directionality of character evolution. The structural and ecological diversity of fishes provides a fertile ground to investigate these interactions. The contributions in this volume highlight some of the specific directions for ecomorphological research covering a variety of biological processes in fishes. These include foraging, locomotion, reproduction, respiration, and sensory systems. Running through these papers are new insights into universal ecomorphological issues, i.e., the relationships between form and ecological role and the factors that modify these relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References cited

  • Baker, J.A., S.A. Foster & M.A. Bell. 1995. Armor morphology and reproductive output in threespine stickleback, Gasterosteus aculeatus. Env. Biol. Fish. 44: 225–233.

    Google Scholar 

  • Balon, E.K. 1975. Reproductive guilds of fishes: a proposal and definition. J. Fish. Res. Board Can. 32: 821–864.

    Google Scholar 

  • Balon, E.K. 1986. Types of feeding in the ontogeny of fishes and the life-history model. Env. Biol. Fish. 16: 11–24.

    Google Scholar 

  • Barel, C.D.N. 1983. Towards a constructional morphology of cichlid fishes (Teleostei, Perciformes). Neth. J. Zool. 33: 357–424.

    Google Scholar 

  • Barel, C.D.N. 1984. Form-relations in the context of constructional morphology — the eye and the suspensorium of lacustrine Cichlidae (Pisces: Teleostei) with a discussion on the implications for phylogenetic and allometric form interpretations. Neth J. Zool. 34: 439–502.

    Google Scholar 

  • Barel, C.D.N. 1993. Concepts of an architectonic approach to transformation morphology. Acta Biotheoretica 41: 345–381.

    Google Scholar 

  • Barel, C.D.N., G.Ch. Anker, F. Witte, R.J.C. Hoogerhoud & T. Goldschmidt. 1989. Constructional constraint and its ecomorphological implications. Acta Morphol. Neerl.-Scand. 27: 83–109.

    Google Scholar 

  • Block, W.M., L.A. Brennan & R.J. Gutierrez. 1991. Ecomorphological relationships of a guild of ground-foraging birds in northern California, USA. Oecologia 87: 449–458.

    Google Scholar 

  • Bock, W.J. 1980. The definition and recognition of biological adaptation. Amer. Zool. 20: 217–227.

    Google Scholar 

  • Bock, W.J. 1990. From biologische Anatomic to ecomorphology. Neth. J. Zool. 40: 254–277.

    Google Scholar 

  • Bock, W.J. & G. von Wahlert. 1965. Adaptation and the form-function complex. Evolution 19: 269–299.

    Google Scholar 

  • Brooks, D.R. & D.A. McLennan. 1991. Phylogeny, ecology, and behavior. A research program in comparative biology. The University of Chicago Press, Chicago. 434.

    Google Scholar 

  • Chapman, L.J. & K.F. Liem. 1995. Papyrus swamps and the respiratory ecology of Barbus neumayeri. Env. Biol. Fish. 44: 183–197.

    Google Scholar 

  • Cech, J.J., Jr. & M.J. Massingill. 1995. Tradeoffs between respiration and feeding in Sacramento blackfish, Orthodon microlepidotus. Env. Biol. Fish. 44: 157–163.

    Google Scholar 

  • Chao, L.N. & J. Musick. 1977. Life history, feeding habits, and functional morphology of juvenile sciaenid fishes in the York River estuary, Virginia. U.S. Fish. Bulletin 75: 657–702.

    Google Scholar 

  • Ciardelli, A. 1967. The anatomy of the feeding mechanism and food habits of Microspathodon chrysurus (Pisces: Pomacentridae). Bull. Mar. Sci. 17: 845–883.

    Google Scholar 

  • Crawford, S.S. & E.K. Balon. 1994. Alternative life histories of the genus Lucania: 3. An ecomorphological explanation of altricial (L. parva) and precocial (L. goodei) species. Env. Biol. Fish. 41: 369–402.

    Google Scholar 

  • Crowder, L.B. 1986. Ecological and morphological shifts in Lake Michigan fishes: glimpses of the ghost of competition past. pp. 147–157. In: C.A. Simenstad & G.M. Cailliet (ed.) Contemporary Studies of Fish Feeding, Dr W Junk Publishers, Dordrecht.

    Google Scholar 

  • Darwin, C.D. 1859. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London. 502 pp.

    Google Scholar 

  • De Groot, S.J. 1969. Digestive system and sensorial factors in reltion to the feeding behaviour of flatfish (Pleuronectiformes). J. Const. int. Explor. Mer 32: 385–395.

    Google Scholar 

  • Douglas, M.E. & W.J. Matthews. 1992. Does morphology predict ecology? Hypothesis testing within a freshwater stream fish assemblage. Oikos 65: 213–224.

    Google Scholar 

  • Dullemeijer, P. 1980. Animal ecology and morphology. Neth. J. Zool. 30: 161–178.

    Google Scholar 

  • Eggold, B.T. & P.J. Motta. 1992. Ontogenetic dietary shifts and morphological correlates in striped mullet, Mugil cephalus. Env. Biol. Fish. 34: 139–158.

    Google Scholar 

  • Ehlinger, T.J. & D.S. Wilson. 1988. Complex foraging polymorphisms in bluegill sunfish. Proc. Nat. Acad. Sci. 85: 1878–1882.

    Google Scholar 

  • Ehlinger, T.J. 1990. Habitat choice and phenotype-limited feeding efficiency in bluegill: individual differences and trophic polymorphism. Ecology 71: 886–896.

    Google Scholar 

  • Ekau, W. 1991. Morphological adaptation and mode of life in high Antarctic fish. pp. 23–39. In: G. Diprisco, B. Maresca & B. Tota (ed.) Biology of Antarctic Fish, Springer-Verlag, Berlin.

    Google Scholar 

  • Felsenstein, J. 1985. Phylogenies and the comparative method. Amer. Nat. 125: 1–15.

    Google Scholar 

  • Foster, S.A. & J.A. Baker. 1995. Evolutionary interplay between ecology, morphology and reproductive behavior in threespine stickleback, Gasterosteus aculeatus. Env. Biol. Fish. 44: 213–223.

    Google Scholar 

  • Fryer, G. & T.D. Iles. 1972. The cichlid fishes of the great lakes of Africa. Oliver & Boyd, Edinburgh. 642 pp.

    Google Scholar 

  • Galis, F. 1993. Interactions between the pharyngeal jaw apparatus, feeding behaviours, and ontogeny in the cichlid fish, Haplochromis piceatus: a study of morphological constraints in evolutionary ecology. J. Exp. Zool. 267: 137–154.

    Google Scholar 

  • Garland, T., Jr., & J.B. Losos. 1994. Ecological morphology of locomotor performance in squamate reptiles. pp. 240–302. In: P.C. Wainwright & S.M. Reilly (ed.) Ecological Morphology, Integrative Organismal Biology, University of Chicago Press, Chicago.

    Google Scholar 

  • Gatz, A.J., Jr. 1979a. Ecological morphology of freshwater stream fishes. Tulane Studies in Zoology and Botany 21: 91–124.

    Google Scholar 

  • Gatz, A.J.,Jr. 1979b. Community organization in fishes as indicated by morphological features. Ecology 60: 711–718.

    Google Scholar 

  • Goldschmid, A. & K. Kotrschal. 1989. Ecomorphology: development and concepts. Fortschr. Zool., Suppl. 35: 501–512.

    Google Scholar 

  • Grossman, G.D. 1986. Food resource partitioning in a rocky intertidal fish assemblage. J. Zool. (London) 1: 317–355.

    Google Scholar 

  • Gould, S.J. & R.C. Lewontin. 1979. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proceeding of the Royal Society of London B 205: 581–598.

    Google Scholar 

  • Harvey, P.H. & M.D. Pagel. 1991. The comparative method in evolutionary biology. Oxford University Press, New York. 239 pp.

    Google Scholar 

  • Hobson, E.S., W.N. McFarland & J.R. Chess. 1981. Crepuscular and nocturnal activities of Californian nearshore fishes, with consideration of their scotopic visual pigments and their photic environment. U.S. Fish. Bull. 79: 1–30.

    Google Scholar 

  • Hoogerhoud, R.J.C. 1987. The adverse effects of shell ingestion for molluscivorous cichlids, a constructional morphological approach. Neth. J. Zool. 37: 277–300.

    Google Scholar 

  • Hoogerhoud, R.J.C., E. Witte & C.D.N. Barel. 1983. Ecological differentiation of two closely resembling Haplochromis species from Lake Victoria (H. iris and H. hiatus; Pisces, Cichlidae). Neth. J. Zool. 33: 283–305.

    Google Scholar 

  • Hori, H. 1993. Frequency-dependent natural selection in the handedness of scale-eating cichlid fish. Science 260: 216–219.

    Google Scholar 

  • Horn, M.H. 1989. The biology of marine herbivorous fishes. Oceanogr. Mar. Biol. Annual Reviews 27: 167–272.

    Google Scholar 

  • Hueter, R.E. 1990. Adaptations for spatial vision in sharks. J. Exp. Zool. Suppl. 5: 130–141.

    Google Scholar 

  • Jayne, B.C. & A.F. Bennett. 1990. Selection on locomotor performance capacity in a natural population of garter snakes. Evolution 44: 1204–1229.

    Google Scholar 

  • Karr, J.R. & F.C. James. 1975. Eco-morphological configurations and convergent evolution of species and communities. pp. 258–291. In: M.L. Cody & J.M. Diamond (ed.) Ecology and Evolution of Communities, Harvard University Press, Cambridge.

    Google Scholar 

  • Keast, A. & D. Webb. 1966. Mouth and body form relative to feeding ecology in the fish fauna of a small lake, Lake Opinion, Ontario. J. Fish. Res. Board Can. 23: 1845–1874.

    Google Scholar 

  • Kingsland, S.E. 1991. Defining ecology as a science. pp. 1–13. In: L.A. Real & J.H. Brown (ed.) Foundations of Ecology, University of Chicago Press, Chicago.

    Google Scholar 

  • Klaauw, C.J. van der. 1948. Ecological studies and reviews. IV. Ecological morphology. Bibliotheca Biotheoretica 4: 27–111.

    Google Scholar 

  • Klaauw, C.J. van der. 1951. Bau, Lebenweise and Milieu der Tiere. Die Grundlagen einer oekologischen Morphologie. Acta Soc. Fauna et Flora Fenn. 67: 1–18.

    Google Scholar 

  • Kotrschal, K. 1995. Ecomorphology of solitary chemosensory cell systems in fish: a review. Env. Biol. Fish. 44: 143–156.

    Google Scholar 

  • Kryzhanovsky, S.G. 1949. Eco-morphological principles in the developments of carps, loaches and catfishes (Cyprinoidei Siluroidei). Trudy Inst. Morph. Zhiv. Severtsova 1: 5–332. (In Russian).

    Google Scholar 

  • Kryzhanovsky, S.G., N.N. Disler & E.N. Smirnova. 1953. Ecomorphological principles of development in perch-like fishes. Trudy Inst. Morph. Zhiv. Severtsova 10: 3–138. (In Russian).

    Google Scholar 

  • Kuhnelt, W. 1943. Die Leitformenmethod in der Ökologie der Landtiere. Biol. Gen. 17: 106–146.

    Google Scholar 

  • Lauder, G.V. 1981. Form and function: structural analysis in evolutionary biology. Paleobiology 7: 430–442.

    Google Scholar 

  • Lauder, G.V. 1982. Historical biology and the problem of design. J. Theor. Biol. 97: 57–67.

    Google Scholar 

  • Leisler, B. & H. Winkler. 1985. Ecomorphology. pp. 155–186. In: R.F. Johnston (ed.) Current Ornithology, Plenum Press, New York.

    Google Scholar 

  • Levine, J.S. & E.F. MacNichol,Jr. 1979. Visual pigments in teleost fishes: effects of habitat, microhabitat, and behavior on visual system evolution. Sensory Processes 3: 95–131.

    Google Scholar 

  • Liem, K.F. 1991. Toward a new morphology: pluralism in research and education. Amer. Zool. 31: 759–767.

    Google Scholar 

  • Liem, K.F. 1993. Ecomorphology of the teleostean skull. pp. 422–452. In: J. Hanken & B.K. Hall (ed.) The Skull, Functional and Evolutionary Mechanisms, Volume 3, The University of Chicago Press, Chicago.

    Google Scholar 

  • Lindsey, C.C. 1978. Form, function, and locomotory habits in fish. pp. 1–100.In: W .S. Hoar & D.J. Randall (ed.) Fish Physiology 7, Academic Press, New York.

    Google Scholar 

  • Long, J.H.,Jr. 1995. Morphology, mechanics, and locomotion: the relation between the notochord and swimming motions in sturgeon. Env. Biol. Fish. 44: 199–211.

    Google Scholar 

  • Losos, J.B. & D.B. Miles. 1994. Adaptation, constraint, and the comparative method: phylogenetic issues and methods. pp. 60–98. In: P.C. Wainwright & S.M. Reilly (ed.) Ecological Morphology, Integrative Organismal Biology, University of Chicago Press, Chicago.

    Google Scholar 

  • Luczkovich, J.J., S.F. Norton & R.G. Gilmore,Jr. 1995. The influence of oral anatomy on prey selection during the ontogeny of two percoid fishes, Lagodon rhomboides and Centropomus undecimalis. Env. Biol. Fish. 44: 79–95.

    Google Scholar 

  • Martin, K.L.M. 1995. Time and tide wait for no fish: intertidal fishes out of water. Env. Biol. Fish. 44: 165–181.

    Google Scholar 

  • Mas-Riera, J. 1991. Changes during growth in the retinal structure of three hake species, Merluccius spp. (Teleostei: Gadiformes), in relation to their depth, distribution and feeding. J. Exp. Mar. Biol. Ecol. 152: 91–104.

    Google Scholar 

  • McFarland, W. 1991. Light in the sea: the optical world of elasmobranchs. J. Exp. Zool. Suppl. 5: 3–12.

    Google Scholar 

  • Mensinger, A.F. 1995. Ecomorphological adaptations to bioluminiscence in Porichthys notatus. Env. Biol. Fish. 44: 133–142.

    Google Scholar 

  • Meyer, A. 1990. Morphometrics and allometry in the trophically polymorphic cichlid fish, Cichlasoma citrinellum: alternative adaptations and ontogenetic changes in shape. J. Zool. (London) 221: 237–260.

    Google Scholar 

  • Mittelbach, G.G., C.W. Osenberg & P.C. Wainwright. 1992. Variation in resource abundance affects diet and feeding morphology in the pumpkinseed sunfish (Lepomis gibbosus) Oecologia 90: 8–13.

    Google Scholar 

  • Montgomery, W.L. 1977. Diet and gut morphology in fishes, with special reference to the monkeyface prickleback, Cebidichthys violaceous (Stichaeidae: Blenniodei). Copeia 1977:178–182.

  • Motta, P.J. 1988. Functional morphology of the feeding apparatus of ten species of Pacific butterflyfishes (Perciformes, Chaetodontidae): an ecomorphological approach. Env. Biol. Fish. 22: 39–67.

    Google Scholar 

  • Motta, P.J. & K.M. Kotrschal. 1992. Correlative, experimental, and comparative evolutionary approaches in ecomorphology. Neth. J. Zool. 42: 400–415.

    Google Scholar 

  • Motta, P.J., K.B. Clifton, P. Hernandez & B.T. Eggold. 1995. Ecomorphological correlates in ten species of subtropical seagrass fishes: diet and microhabitat utilization. Env. Biol. Fish. 44: 37–60.

    Google Scholar 

  • Munz, F.W. & W.N. McFarland. 1977. Evolutionary adaptations of fishes to the photic environment. pp. 193–274. In: F. Crescitelli (ed.) The Handbook of Sensory Physiology VII/5, Springer-Verlag, Heidelberg.

    Google Scholar 

  • Nagelkerke, L.A.J., F.A. Sibbing, J.G.M. van den Boogaart, E.H.R.R. Lammens & J.W.M. Osse. 1994. The barbs (Barbus spp.) of Lake Tana: a forgotten species flock? Env. Biol. Fish. 39: 1–22.

    Google Scholar 

  • Norton, S.F. 1991. Capture success and diet of cottid fishes: the role of predator morphology and attack kinematics. Ecology 72: 1807–1819.

    Google Scholar 

  • Norton, S.F. 1995. A functional approach to ecomorphological patterns of feeding in cottid fishes. Env. Biol. Fish. 44: 61–78.

    Google Scholar 

  • Norton, S.F. & E.L. Brainerd. 1993. Convergence in the feeding mode of ecomorphologically similar species in the Centrarchidae and Cichlidae. J. Exp. Biol. 176: 11–29.

    Google Scholar 

  • Odum, E.P. 1971. Ecology. W.B. Saunders Co., Philadelphia. 574 pp.

    Google Scholar 

  • Pankhurst, N.W. 1987. Intra- and interspecific changes in retinal morphology among mesopelagic and demersal teleosts from the slope waters of New Zealand. Env. Biol. Fish. 19: 269–280.

    Google Scholar 

  • Purcell, S.W. & D.R. Bellwood. 1993. A functional analysis of food procurement in two surgeonfish species, Acanthurus nigrofuscus and Ctenochaetus striatus (Acanthuridae). Env. Biol. Fish. 37: 139–159.

    Google Scholar 

  • Remane, A. 1943. Die Bedeutung der Lebensformentypen fur die Ökologie. Biol. Gen. 17: 164–182.

    Google Scholar 

  • Reilly, S.M. & P.C. Wainwright. 1994. Conclusion: ecological morphology and the power of integration. pp. 339–354. In: P.C. Wainwright & S.M. Reilly (ed.) Ecological Morphology, Integrative Organismal Biology, University of Chicago Press, Chicago.

    Google Scholar 

  • Ricklefs, R.E. & D.B. Miles. 1994. Ecological and evolutionary inferences from morphology: an ecological perspective. pp. 13–41. In: P.C. Wainwright & S.M. Reilly (ed.) Ecological Morphology, Integrative Organismal Biology, University of Chicago Press, Chicago.

    Google Scholar 

  • Robinson, B.W, D.S. Wilson, A.S. Margosian & P.T. Lotito. 1993. Ecological and morphological differentiation of pumpkinseed sunfish in lakes without bluegill sunfish. Evol. Ecol. 7: 451–464.

    Google Scholar 

  • Schluter, D. 1988. Character displacement and the adaptive divergence of finches on islands and continents. Amer. Nat. 131: 799–824.

    Google Scholar 

  • Schluter, D. 1994. Experimental evidence that competition promotes divergence in adaptive radiation. Science 266: 798–801.

    Google Scholar 

  • Stoner, A.W. & R.J. Livingston. 1984. Ontogenetic patterns in diet and feeding morphology in sympatric sparid fishes from seagrass meadows. Copeia 1984:174–187.

  • Sturmbauer, C., W. Mark & R. Dallinger. 1992. Ecophysiology of Aufwuchs-eating cichlids in Lake Tanganyika: niche separation by trophic specialization. Env. Biol. Fish. 35: 283–290.

    Google Scholar 

  • Swain, D.P. 1992. The functional basis of natural selection for vertebral traits of larvae in the stickleback Gasterosteus aculeatus. Evolution 46: 987–997.

    Google Scholar 

  • Turingan, R.G. 1994. Ecomorphological relationships among Caribbean tetraodontiform fishes. J. Zool. (London) 233: 493–521.

    Google Scholar 

  • van der Meer, H.J., G.Ch. Anker & C.D.N. Barel. 1995. Ecomorphology of retinal structures in zooplanktivorous haplochromine cichlids (Pisces) from Lake Victoria. Env. Biol. Fish. 44: 115–132.

    Google Scholar 

  • Vergina, I.A. 1991. Basic adaptations of the digestive system in bony fishes as a function of diet. J. Ichthyol. 31: 8–20.

    Google Scholar 

  • Wainwright, P.C. 1987. Biomechanical limits to ecological performance: mollusc-crushing by the Caribbean hogfish, Lachnolaimus maximus (Labridae). J. Zool. (London) 213: 283–297.

    Google Scholar 

  • Wainwright, P.C. 1988. Morphology and ecology: functional basis of feeding constraints in Caribbean labrid fishes. Ecology 69: 635–645.

    Google Scholar 

  • Wainwright, P.C. 1994. Functional morphology as a tool in ecological research. pp. 42–59. In: P.C. Wainwright & S.M. Reilly (ed.) Ecological Morphology, Integrative Organismal Biology, University of Chicago Press, Chicago.

    Google Scholar 

  • Wainwright, P.C. & B.A. Richard. 1995. Predicting patterns of prey use from morphology of fishes. Env. Biol. Fish. 44: 97–113.

    Google Scholar 

  • Wainwright, P.C. & S.M. Reilly. 1994. Introduction. pp. 1–9. In: P.C. Wainwright & S.M. Reilly (ed.) Ecological Morphology, Integrative Organismal Biology, University of Chicago Press, Chicago.

    Google Scholar 

  • Watson, D.J. & E.K. Balon. 1984. Ecomorphological analysis of fish taxocenes in rainforest streams in northern Borneo. J. Fish Biol. 25: 371–384.

    Google Scholar 

  • Webb, P.W. 1984. Form and function in fish swimming. Sci. Amer. 251: 72–82.

    Google Scholar 

  • Webb, P.W. 1988. Simple physical principles and vertebrate aquatic locomotion. Amer. Zool. 28: 709–725.

    Google Scholar 

  • Werner, E.E. & D.J. Hall. 1976. Niche shifts in sunfishes: experimental evidence and significance. Science 191: 404–406.

    Google Scholar 

  • Werner, E.E. & D.J. Hall. 1979. Foraging efficiency and habitat switching in competing sunfishes. Ecology 60: 256–264.

    Google Scholar 

  • Werner, E.E., D.J. Hall, D.R. Laughlin, D.J. Wagner, L.A. Wilsmann & F.C. Funk. 1977. Habitat partitioning in a freshwater fish community. J. Fish. Res. Board Can. 34: 360–370.

    Google Scholar 

  • Westneat, M.W. 1995. Phylogenetic systematics and biomechanics in ecomorphology. Env. Biol. Fish. 44: 263–283.

    Google Scholar 

  • Wiens, J.A. 1977. On competition and variable environments. Amer. Sci. 65: 590–597.

    Google Scholar 

  • Wiens, J.A. & J.T. Rotenberry. 1980. Patterns of morphology and ecology in grassland and shrubsteppe bird populations. Ecol. Monogr. 50: 287–308.

    Google Scholar 

  • Wikramanayake, E.D. 1990. Ecomorphology and biogeography of a tropical stream fish assemblage: evolution of assemblage structure. Ecology 71: 1756–1764.

    Google Scholar 

  • Wimberger, P.H. 1991. Plasticity of jaw and skull morphology in the neotropical cichlids Geophagus brasiliensis and G. steindachneri. Evolution 45: 1545–1563.

    Google Scholar 

  • Winemiller, K.O. 1991. Ecomorphological diversification in lowland freshwater fish assemblages from five biotic regions. Ecol. Monogr. 61: 343–365.

    Google Scholar 

  • Winemiller, K.O., L.C. Kelso-Winemiller & A.L. Brenkert. 1995. Ecomorphological diversification and convergence in fluvial cichlid fishes. Env. Biol. Fish. 44: 235–261.

    Google Scholar 

  • Witte, F.C.D.N. Barel & R.J.C. Hoogerhoud. 1990. Phenotypic plasticity of anatomical structures and its ecomorphological significance. Neth. J. Zool. 40: 278–298.

    Google Scholar 

  • Zihler, F. 1982. Gross morphology and configuration of the digestive tracts of cichlidae (Teleostei, Perciformes): phylogenetic and functional significance. Neth. J. Zool. 32: 544–571.

    Google Scholar 

  • Zweers, G. 1988. Holism and neutralism for open systems. Amer. Zool. 28: 277–288.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motta, P.J., Norton, S.F. & Luczkovich, J.J. Perspectives on the ecomorphology of bony fishes. Environ Biol Fish 44, 11–20 (1995). https://doi.org/10.1007/BF00005904

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00005904

Key words

Navigation