Skip to main content

Development of Dairy Wastewater Treatment for Valuable Applications

  • Conference paper
  • First Online:
Emerging Materials and Technologies in Water Remediation and Sensing (ICWT 2022)

Abstract

With the increasing demand for different dairy products, dairy industries have increased their production resulting in the generation of an enlarged volume of waste. Wastewater (WW) is their major waste which contains high concentration of biological and chemical oxygen demand, and different organic and inorganic debris. There is little scope for processing entire WW in terms of overall production cost. Therefore, a major portion of the WW is discarded either after the primary treatment or directly without any treatment in different developing countries. However, different research groups are trying their best to find out a low-cost and eco-friendly solution for developing a suitable treatment process. Current review summarises the recent development in the treatment of dairy WW (DWW) using different techniques. Since the DWW contains a high concentration of organic pollutants, it can be used as a carbon source for the production of bio-energy like methane gas and bioelectricity. For this purpose, microbial fuel cell (MFC) is one of the advanced techniques. Many researchers are working on the development of a suitable MFC for the DWW treatment coupled with bio-energy generation. Further, the MFCs are hybridised to produce high calorific hydrogen gas which will be going to become the common fuel for all types of energy purposes. Direct anaerobic treatment of the WW is another technique used for the production of biogas; however, the longevity of anaerobic reactor has posed many questions. The high organic pollutant containing DWW is used as a substrate for the production of bio-surfactants, bio-plastics and bio-molecules through different biotechnological methods. Although there is potential in the valorisation of DWW streams to produce bio-energy and bio-products while also resolving the waste handling challenges, more work remains to be done to enhance and demonstrate the industrial viability of these technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Luqman, M., Al-Ansari, T.: A novel solution towards zero waste in dairy farms: a thermodynamic study of an integrated polygeneration approach. Energy Convers. Manage. 230, 113753 (2021)

    Article  CAS  Google Scholar 

  2. Ahmad, T., Aadil, R.M., Ahmed, H., Rahman, U., Soares, B.C., Souza, S.L., Cruz, A.G.: Treatment and utilization of dairy industrial waste: a review. Trends Food Sci. Technol. 88, 361–372 (2019)

    Article  CAS  Google Scholar 

  3. Marassi, R.J., López, M.B.G., Queiroz, L.G., Silva, D.C.V., da Silva, F.T., de Paiva, T.C.B., Silva, G.C.: Efficient dairy wastewater treatment and power production using graphite cylinders electrodes as a biofilter in microbial fuel cell. Biochem. Eng. J. Eng. J. 178, 108283 (2022)

    Article  CAS  Google Scholar 

  4. Choudhury, P., Bhunia, B., Bandyopadhyay, T.K., Ray, R.N.: The overall performance improvement of microbial fuel cells connected in series with dairy wastewater treatment. J. Electrochem. Sci. Technol.Electrochem. Sci. Technol. 12(1), 101–111 (2021)

    Article  CAS  Google Scholar 

  5. Choudhury, P., Ray, R.N., Tiwari, O.N., Bandyopadhyay, T.K., Muthuraj, M., Bhunia, B.: Strategies for improvement of microbial fuel cell performance via stable power generation from real dairy wastewater. Fuel 288, 119653 (2021)

    Article  CAS  Google Scholar 

  6. Sar, T., Harirchi, S., Ramezani, M., Bulkan, G., Akbas, M.Y., Pandey, A., Taherzadeh, M.J.: Potential utilization of dairy industries by-products and wastes through microbial processes: a critical review. Sci. Total. Environ. 810, 152253 (2022)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Roufou, S., Griffin, S., Katsini, L., Polańska, M., Van Impe, J.F., Valdramidis, V.P.: The (potential) impact of seasonality and climate change on the physicochemical and microbial properties of dairy waste and its management. Trends Food Sci. Technol. 116, 1–10 (2021)

    Article  CAS  Google Scholar 

  8. Awasthi, M.K., Paul, A., Kumar, V., Sar, T., Kumar, D., Sarsaiya, S., Taherzadeh, M.J.: Recent trends and developments on integrated biochemical conversion process for valorization of dairy waste to value added bioproducts: a review. Biores. Technol.. Technol. 344, 126193 (2022)

    Article  Google Scholar 

  9. Usmani, Z., Sharma, M., Gaffey, J., Sharma, M., Dewhurst, R.J., Moreau, B., Gupta, V.K.: Valorization of dairy waste and by-products through microbial bioprocesses. Bioresour. Technol. 126444 (2021)

    Google Scholar 

  10. McAteer, P.G., Trego, A.C., Thorn, C., Mahony, T., Abram, F., O’Flaherty, V.: Reactor configuration influences microbial community structure during high-rate, low-temperature anaerobic treatment of dairy wastewater. Biores. Technol.. Technol. 307, 123221 (2020)

    Article  CAS  Google Scholar 

  11. Mozejko-Ciesielska, J., Marciniak, P., Moraczewski, K., Rytlewski, P., Czaplicki, S., Zadernowska, A.: Cheese whey mother liquor as dairy waste with potential value for polyhydroxyalkanoate production by extremophilic Paracoccus homiensis. Sustain. Mater. Technol. 33, e00449 (2022)

    CAS  Google Scholar 

  12. Kothari, R., Pathak, V.V., Kumar, V., Singh, D.P.: Experimental study for growth potential of unicellular alga Chlorella pyrenoidosa on dairy waste water: an integrated approach for treatment and biofuel production. Biores. Technol. Technol. 116, 466–470 (2012)

    Article  CAS  Google Scholar 

  13. Ferreira, T.F., Santos, P.A., Paula, A.V., de Castro, H.F., Andrade, G.S.: Biogas generation by hybrid treatment of dairy wastewater with lipolytic whole cell preparations and anaerobic sludge. Biochem. Eng. J. Eng. J. 169, 107965 (2021)

    Article  CAS  Google Scholar 

  14. Shen, J., Wang, C., Liu, Y., Hu, C., Xin, Y., Ding, N., Su, S.: Effect of ultrasonic pretreatment of the dairy manure on the electricity generation of microbial fuel cell. Biochem. Eng. J. Eng. J. 129, 44–49 (2018)

    Article  CAS  Google Scholar 

  15. Raja, S.W., Thanuja, K.G., Karthikeyan, S., Marimuthu, S.: Exploring the concurrent use of microalgae Coelastrella sp. for electricity generation and dairy wastewater treatment. Bioresour. Technol. Rep. 17, 100889 (2022)

    Google Scholar 

  16. Goli, A., Shamiri, A., Khosroyar, S., Talaiekhozani, A., Sanaye, R., Azizi, K., Talaiekhozani, A.: A review on different aerobic and anaerobic treatment methods in dairy industry wastewater. A review on different aerobic and anaerobic treatment methods in dairy industry wastewater. J. Environ. Treat. Tech. 7(1), 113–41 (2019)

    Google Scholar 

  17. Yonar, T., Sivrioğlu, Ö., Özengin, N.: Physico-chemical treatment of dairy industry wastewaters: a review. In: Koca, N. (ed.) Technological Approaches for Novel Applications in Dairy Processing, p. 179 (2018)

    Google Scholar 

  18. Johannesson, G.H., Crolla, A., Lauzon, J.D., Gilroyed, B.H.: Estimation of biogas co-production potential from liquid dairy manure, dissolved air flotation waste (DAF) and dry poultry manure using biochemical methane potential (BMP) assay. Biocatal. Agric. Biotechnol. Agric. Biotechnol. 25, 101605 (2020)

    Article  Google Scholar 

  19. Chu, C.Y., Wang, Z.F.: Dairy cow solid waste hydrolysis and hydrogen/methane productions by anaerobic digestion technology. Int. J. Hydrogen Energy 42(52), 30591–30598 (2017)

    Article  CAS  Google Scholar 

  20. Zhong, J., Stevens, D.K., Hansen, C.L.: Optimization of anaerobic hydrogen and methane production from dairy processing waste using a two-stage digestion in induced bed reactors (IBR). Int. J. Hydrogen Energy 40(45), 15470–15476 (2015)

    Article  CAS  Google Scholar 

  21. Lhanafi, S., Anfar, Z., Chebli, B., Benafqir, M., El Haouti, R., Azougarh, Y., El Alem, N.: Factorial experimental design to enhance methane production of dairy wastes co-digestion. Sustain. Environ. Res. 28(6), 389–395 (2018)

    Article  CAS  Google Scholar 

  22. Choudhury, P., Ray, R.N., Bandyopadhyay, T.K., Tiwari, O.N., Bhunia, B.: Kinetics and performance evaluation of microbial fuel cell supplied with dairy wastewater with simultaneous power generation. Int. J. Hydrogen Energy 46(31), 16815–16822 (2021)

    Article  CAS  Google Scholar 

  23. Selvasembian, R., Mal, J., Rani, R., Sinha, R., Agrahari, R., Joshua, I., Pradhan, N.: Recent progress in microbial fuel cells for industrial effluent treatment and energy generation: Fundamentals to scale-up application and challenges. Biores. Technol. Technol. 346, 126462 (2022)

    Article  CAS  Google Scholar 

  24. Bhargavi, G., Venu, V., Renganathan, S.: Microbial fuel cells: recent developments in design and materials. In: IOP Conference Series: Materials Science and Engineering, vol. 330, no. 1, p. 012034. (2018)

    Google Scholar 

  25. Sekar, A.D., Jayabalan, T., Muthukumar, H., Chandrasekaran, N.I., Mohamed, S.N., Matheswaran, M.: Enhancing power generation and treatment of dairy waste water in microbial fuel cell using Cu-doped iron oxide nanoparticles decorated anode. Energy 172, 173–180 (2019)

    Article  CAS  Google Scholar 

  26. Sanjay, S., Udayashankara, T.H.: Dairy wastewater treatment with bio-electricity generation using dual chambered membrane-less microbial fuel cell. Mater. Today: Proc. 35, 308–311 (2021)

    Article  CAS  Google Scholar 

  27. Tajdid, K.R., Aber, S., Nofouzi, K., Ebrahimi, S.: Treatment of mixed dairy and dye wastewater in anode of microbial fuel cell with simultaneous electricity generation. Environ. Sci. Pollut. Res. 27(35), 43711–43723 (2020)

    Article  Google Scholar 

  28. Mansoorian, H.J., Mahvi, A.H., Jafari, A.J., Khanjani, N.: Evaluation of dairy industry wastewater treatment and simultaneous bioelectricity generation in a catalyst-less and mediator-less membrane microbial fuel cell. J. Saudi Chem. Soc. 20(1), 88–100 (2016)

    Article  CAS  Google Scholar 

  29. Choudhury, P., Ray, R.N., Bandyopadhyay, T.K., Basak, B., Muthuraj, M., Bhunia, B.: Process engineering for stable power recovery from dairy wastewater using microbial fuel cell. Int. J. Hydrogen Energy 46(4), 3171–3182 (2021)

    Article  CAS  Google Scholar 

  30. Choudhury, P., Ray, R.N., Bandyopadhyay, T.K., Bhunia, B.: Fed batch approach for stable generation of power from dairy wastewater using microbial fuel cell and its kinetic study. Fuel 266, 117073 (2020)

    Article  CAS  Google Scholar 

  31. Choudhury, P., Bhunia, B., Mahata, N., Bandyopadhyay, T.K.: Optimization for the improvement of power in equal volume of single chamber microbial fuel cell using dairy wastewater. J. Indian Chem. Soc. 99(6), 100489 (2022)

    Article  CAS  Google Scholar 

  32. Vidhyeswari, D., Surendhar, A., Bhuvaneshwari, S.: Evaluation of power generation and treatment efficiency of dairy wastewater in microbial fuel cell using TiO2–SPEEK as proton exchange membrane. Water Sci. Technol. 84(10–11), 3388–3402 (2021)

    Article  CAS  PubMed  Google Scholar 

  33. Marassi, R.J., Queiroz, L.G., Silva, D.C., Dos Santos, F.S., Silva, G.C., de Paiva, T.C.: Long-term performance and acute toxicity assessment of scaled-up air–cathode microbial fuel cell fed by dairy wastewater. Bioprocess Biosyst. Eng. 43(9), 1561–1571 (2020)

    Article  CAS  PubMed  Google Scholar 

  34. Santos, A.D., Martins, R.C., Quinta-Ferreira, R.M., Castro, L.M.: Moving bed biofilm reactor (MBBR) for dairy wastewater treatment. Energy Rep. 6, 340–344 (2020)

    Article  Google Scholar 

  35. Modi, J., Choumal, A., Vyas, D., Shah, D., Joshi, K., Patel, K., Iyer, K.: Sustainable technology for modern era effluent treatment: Microbial fuel cell. Mater. Today: Proc. 57, 1781–1788 (2022)

    Article  CAS  Google Scholar 

  36. Rani, G., Banu, J.R., Kumar, G., Yogalakshmi, K.N.: Statistical optimization of operating parameters of microbial electrolysis cell treating dairy industry wastewater using quadratic model to enhance energy generation. Int. J. Hydrogen Energy 47(88), 37401–37414 (2022)

    Article  CAS  Google Scholar 

  37. Elakkiya, E., Matheswaran, M.: Comparison of anodic metabolisms in bioelectricity production during treatment of dairy wastewater in Microbial Fuel Cell. Biores. Technol. 136, 407–412 (2013)

    Article  CAS  Google Scholar 

  38. Das, B., Sarkar, S., Sarkar, A., Bhattacharjee, S., Bhattacharjee, C.: Recovery of whey proteins and lactose from dairy waste: a step towards green waste management. Process. Saf. Environ. Prot.Saf. Environ. Prot. 101, 27–33 (2016)

    Article  CAS  Google Scholar 

  39. Martínez-Ruano, J.A., Restrepo-Serna, D.L., Carmona-Garcia, E., Giraldo, J.A.P., Aroca, G., Cardona, C.A.: Effect of co-digestion of milk-whey and potato stem on heat and power generation using biogas as an energy vector: techno-economic assessment. Appl. Energy 241, 504–518 (2019)

    Google Scholar 

  40. Arias, A., Feijoo, G., Moreira, M.T.: Process and environmental simulation in the validation of the biotechnological production of nisin from waste. Biochem. Eng. J. 108105 (2021)

    Google Scholar 

  41. Ottaviano, L.M., Ramos, L.R., Botta, L.S., Amâncio Varesche, M.B., Silva, E.L.: Continuous thermophilic hydrogen production from cheese whey powder solution in an anaerobic fluidized bed reactor: Effect of hydraulic retention time and initial substrate concentration. Int. J. Hydrogen Energy 42(8), 4848–4860 (2017)

    Article  CAS  Google Scholar 

  42. Schierano, M.C., Panigatti, M.C., Maine, M.A., Griffa, C.A., Boglione, R.: Horizontal subsurface flow constructed wetland for tertiary treatment of dairy wastewater: removal efficiencies and plant uptake. J. Environ. Manage. 272, 111094 (2020)

    Article  CAS  PubMed  Google Scholar 

  43. Yadav, J.S.S., Yan, S., Ajila, C.M., Bezawada, J., Tyagi, R.D., Surampalli, R.Y.: Food-grade single-cell protein production, characterization and ultrafiltration recovery of residual fermented whey proteins from whey. Food Bioprod. Process.Bioprod. Process. 99, 156–165 (2016)

    Article  CAS  Google Scholar 

  44. Iglesias-Iglesias, R., Portela-Grandío, A., Treu, L., Campanaro, S., Kennes, C., Veiga, M.C.: Co-digestion of cheese whey with sewage sludge for caproic acid production: role of microbiome and polyhydroxyalkanoates potential production. Biores. Technol. Technol. 337, 125388 (2021)

    Article  CAS  Google Scholar 

  45. Carvalho, F., Prazeres, A.R., Rivas, J.: Cheese whey wastewater: characterization and treatment. Sci. Total. Environ. 445–446, 385–396 (2013)

    Article  ADS  PubMed  Google Scholar 

  46. Zotta, T., Solieri, L., Iacumin, L., Picozzi, C., Gullo, M.: Valorization of cheese whey using microbial fermentations. Appl. Microbiol. Biotechnol.Microbiol. Biotechnol. 104, 2749–2764 (2020)

    Article  CAS  Google Scholar 

  47. Mohamed, A.Y.A., Siggins, A., Healy, M.G., Uallacháin, D.Ó., Fenton, O., Tuohy, P.: A novel hybrid coagulation-constructed wetland system for the treatment of dairy wastewater. Sci. Total. Environ. 847, 157567 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. (Dr.) Manojranjan Nayak, President of Siksha ‘O’ Anusandhan (Deemed to be University) for providing infrastructure and encouragement throughout the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debabrata Pradhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Satpathy, S.S., Ojha, P.C., Pradhan, D. (2024). Development of Dairy Wastewater Treatment for Valuable Applications. In: Saxena, S., Shukla, S., Mural, P.K.S. (eds) Emerging Materials and Technologies in Water Remediation and Sensing. ICWT 2022. Lecture Notes in Civil Engineering, vol 439. Springer, Singapore. https://doi.org/10.1007/978-981-99-6762-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6762-9_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6761-2

  • Online ISBN: 978-981-99-6762-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics