Skip to main content

An Overview of Distributed Generation Integration Techniques, Present Trends and Future Scope

  • Conference paper
  • First Online:
Flexible Electronics for Electric Vehicles (FLEXEV 2022)

Abstract

Distributed generation integration is a new booming and fast-adopting technology. The small rating components, compactness, local power demand fulfilment and renewable-based input energy sources are the attractive features of distributed energy resources. They offer a reliable and secure supply at distribution level. The system as a whole is relieved from heavy power congestion with the presence of these local energy sources. However, DERs suffer from low inertia issues, power quality problems and changing input energy and load patterns. This paper reviews the DG technologies in service, their contribution in total energy demands and need for active distribution networks and future challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mousavi OA, Bozorg M, Cherkaoui R (2013) Preventive reactive power management for improving voltage stability margin. Electr Power Syst Res 96:36–46

    Article  Google Scholar 

  2. Eremia M, Shahidehpour M (2013) Handbook of electrical power system dynamics: modeling, stability, and control. Wiley

    Google Scholar 

  3. EU Commission Task Force for Smart Grids (2010) Functionalities of smart grids and smart meters. [Online]. http://ec.europa.eu/

  4. Tolba MA, Rezk H, Al-Dhaifallah M, Eisa AA (2020) Heuristic optimization techniques for connecting renewable distributed generators on distribution grids. Neural Comput Appl 32(17): 14195−14225. https://doi.org/10.1007/s00521-020-04812-y

  5. Essallah S, Khedher A, Bouallegue A (2019) Integration of distributed generation in electrical grid: optimal placement and sizing under different load conditions. Comput Electr Eng 79. Art. no. 106461. https://doi.org/10.1016/j.compeleceng.2019.106461

  6. El-Ela AAA, El-Sehiemy RA, Shaheen AM, Ellien AR (2021) Optimal allocation of distributed generation units correlated with fault current limiter sites in distribution systems. IEEE Syst J 15(2): 214−2155. https://doi.org/10.1109/jsyst.2020.3009028

  7. Yinger R, Robert S (2017) Modernizing the California grid: preparing for a future with high penetrations of distributed energy resources. IEEE Power Energy Mag 15(2): 20–28

    Google Scholar 

  8. Southern California Edison (2018) Southern California edison company’s (U-338-E) annual report on the status of the electric program investment charge program

    Google Scholar 

  9. Yinger R (2018) Integrated grid project (IGP). In: EPIC winter symposium

    Google Scholar 

  10. Ettehadi M, Ghasemi H, Vaez-Zadeh S (2012) Voltage stability based DG placement in distribution networks. IEEE Trans Power Delivery 28. https://doi.org/10.1109/TPWRD.2012.2214241

  11. PecasLopes JA, Hatziargyriou N, Mutale J, Djapic P, Jenkins N (2007) Integrating distributed generation into electric power systems: a review of drivers, challenges and opportunities. Int J Elect Power Syst Res 77:1189–1203

    Article  Google Scholar 

  12. Cuffe P, Smith P, Keane A (2014) Capability chart for distributed reactive power resources. IEEE Trans Power Syst 29(1):15–22

    Article  Google Scholar 

  13. \bibitem{b13} (2008) IEEE application guide for IEEE Std 1547. In: IEEE standard for interconnecting distributed resources with electric power systems

    Google Scholar 

  14. Shaheen AM, Elsayed AM, El-Sehiemy RA, Abdelaziz AY (2021) Equilibrium optimization algorithm for network reconfiguration and distributed generation allocation in power systems. Appl Soft Comput 98, Art. no. 106867. https://doi.org/10.1016/j.asoc.2020.106867

  15. Hooshmand E, Rabiee A (2019) Energy management in distribution systems, considering the impact of reconfiguration, RESs, ESSs and DR: a trade-off between cost and reliability. Renew Energy 139:346−358. https://doi.org/10.1016/j.renene.2019.02.101

  16. Tonkoski R, Turcotte D, El-Fouly THM (2012) Impact of high PV penetration on voltage profiles in residential neighborhoods. IEEE Trans Sustain Energy 3(3):518–527

    Article  Google Scholar 

  17. Milanovic JV, Mat Zali S (2013) Validation of equivalent dynamic model of active distribution network cell. IEEE Trans Power Syst 28(3):2101–2110.

    Google Scholar 

  18. Yuquan L, Meng Y, Ke W, Ming G (2014) Research on transmission and distribution network reactive power/voltage coordinated control technology of large receiving-end urban power grid. In: 2014 IEEE international confrence on mechatronics and automation. pp 1990−1994

    Google Scholar 

  19. Ghazavi Dozein M, Ansari J, Shahbazi HR, Kalantar M (2013) Optimal distribution voltage control through a sub-framework in the reactive power management on the smart grid. In: 2013 smart grid conference (SGC). pp 153–159

    Google Scholar 

  20. Siirto OK, Safdarian A, Lehtonen M, Fotuhi-Firuzabad M (2015) Optimal distribution network automation considering earth fault events. IEEE Trans Smart Grid 6(2):1010−1018. https://doi.org/10.1109/TSG.2014.2387471

  21. Fetouh T, Elsayed AM (2020) Optimal control and operation of fully automated distribution networks using improved tunicate swarm intelligent algorithm. IEEE Access 8:129689−129708. https://doi.org/10.1109/ACCESS.2020.3009113

  22. McGranaghan M, Goodman F (2005) Technical and system requirements for advanced distribution automation. In: Proceedings of 18th international conference and exhibition on electricity distribution (CIRED). pp v5–93. https://doi.org/10.1049/cp:20051374

  23. Ranamuka D, Agalgaonkar AP, Muttaqi KM (2019) Innovative Volt/VAr control philosophy for future distribution systems embedded with voltage-regulating devices and distributed renewable energy resources. IEEE Syst J 13(3):3153–3164

    Article  Google Scholar 

  24. Teshome D, Xu W, Bagheri P, Nassif A, Zhou Y (2019) A reactive power control scheme for DER-caused voltage rise mitigation in secondary systems. In: 2019 IEEE power & energy society general meeting (PESGM). Atlanta, GA, USA, p 1

    Google Scholar 

  25. Hu S, Xiang Y, Zhang X, Liu J, Wang R, Hong B (2019) Reactive power operability of distributed energy resources for voltage stability of distribution networks. J Mod Power Syst Clean Energy 7(4):851–861. https://doi.org/10.1007/s40565-018-0484-3

    Article  Google Scholar 

  26. Modarresi J, Gholipour E, Khodabakhshian A (2016) A comprehensive review of the voltage stability indices. Renew Sust Energ Rev 63:1–12

    Article  Google Scholar 

  27. Meena NK, Swarnkar A, Gupta N et al (2017) Multi-objective Taguchi approach for optimal DG integration in distribution systems. IET Gener Transm Distrib 11(9):2418–2428

    Article  Google Scholar 

  28. Yuvaraj T, Devabalaji KR, Ravi K (2015) Optimal placement and sizing of DSTATCOM using harmony search algorithm. Energy Procedia 79:759–765

    Article  Google Scholar 

  29. Maksić M, Matvoz D (2014) A practical case of determining the maximum allowed PV plant connection power using different reactive power control concepts. In: 2014 IEEE power engineering society general meeting

    Google Scholar 

  30. Weckx S, Driesen J (2016) Optimal local reactive power control by pv inverters. IEEE Trans Sustain Energy 7(4):1624–1633

    Article  Google Scholar 

  31. Yang G, Marra F, Juamperez M et al (2015) Voltage rise mitigation for solar PV integration at LV grids. J Mod Power Syst Clean Energy 3:411–421

    Article  Google Scholar 

  32. Lee TL, HuYu SH, Chan H (2013) D-STATCOM with positive-sequence admittance and negative-sequence conductance to mitigate voltage fluctuations in high-level penetration of distributed-generation systems. IEEE Trans Ind Electron 60: 1417–1428

    Google Scholar 

  33. Zhang Z, Ochoa LF, Valverde G (2018) A novel voltage sensitivity approach for the decentralized control of dg plants. IEEE Trans Power Syst 33(2):1566–1576

    Article  Google Scholar 

  34. Ali ES, Abd Elazim SM, Abdelaziz AY (2016) Ant lion optimization algorithm for renewable distributed generations. Energy 116, Part 1: 445–458

    Google Scholar 

  35. Sannigrahi S, Ghatak S, Acharjee P (2019) Strategically incorporation of RES and DSTATCOM for techno-economic-environmental benefits using search space reduction based improved CSA. IET Gener Transm Distrib 13. https://doi.org/10.1049/iet-gtd.2018.5220

  36. Poornazaryan B, Karimyan P, Gharehpetian GB et al (2016) Optimal allocation and sizing of DG units considering voltage stability, losses and load variations. Int J Electr Power 79:42–52

    Article  Google Scholar 

  37. Murty VVSN, Kumar A (2015) Optimal placement of DG in radial distribution systems based on new voltage stability index under load growth. Int J Electr Power 69:246–256

    Article  Google Scholar 

  38. Arcidiacono V, Chiandone M, Sulligoi G (2011) Voltage control in distribution networks using smart control devices of the distributed generators. In: 2011 international conference on clean electrical power (ICCEP). pp 738–743

    Google Scholar 

  39. Rocha L, Castro R, Jesus JMF (2016) An improved particle swarm optimization algorithm for optimal placement and sizing of STATCOM. Int Trans Electr Energy 26(4):825–840

    Article  Google Scholar 

  40. Hedayati H, Nabaviniaki SA, Akbarimajd A (2008) A method for placement of DG units in distribution networks. IEEE Trans Power Del 23(3):1620–1628

    Article  Google Scholar 

  41. Ettehadi M, Ghasemi H, Vaez-Zadeh S (2013) Voltage stability based DG placement in distribution networks. IEEE Trans Power Del 28(1):171–178

    Article  Google Scholar 

  42. Masters CL (2002) Voltage rise: the big issue when connecting embedded generation to long 11kV overhead lines. Power Eng J 16(1):5–12. https://doi.org/10.1049/pe:20020101

    Article  Google Scholar 

  43. Esmaeilian HR, Fadaeinedjad R (2015) Energy loss minimization in distribution systems utilizing an enhanced reconfiguration method integrating distributed generation. IEEE Syst J 9(4):1430–1439

    Article  Google Scholar 

  44. Liu Y, Li J, Wu L (2018) Coordinated optimal network reconfiguration and voltage regulator/DER control for unbalanced distribution systems. IEEE Trans Smart Grid. https://doi.org/10.1109/TSG.2018.2815010.

  45. Pe´rez-London˜o S, Rodrı´guez LF, Olivar G (2014) A simplified voltage stability index (SVSI). Int J Electr Power 63:806−813

    Google Scholar 

  46. Balamourougan V, Sidhu TS, Sachdev MS (2004) Technique for online prediction of voltage collapse. IEE Proc Gener, Transm Distrib 151(4):453–460

    Article  Google Scholar 

  47. Doğanşahin K, Kekezoğlu B, Yumurtacı R, Erdinç O, Catalão J (2018) Maximum permissible integration capacity of renewable DG units based on system loads. Energies 11:255. https://doi.org/10.3390/en1101025

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Porwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Porwal, D., Fozdar (SMIEEE), M., Tiwari, R. (2024). An Overview of Distributed Generation Integration Techniques, Present Trends and Future Scope. In: Goyal, S.K., Palwalia, D.K., Tiwari, R., Gupta, Y. (eds) Flexible Electronics for Electric Vehicles. FLEXEV 2022. Lecture Notes in Electrical Engineering, vol 1065. Springer, Singapore. https://doi.org/10.1007/978-981-99-4795-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4795-9_25

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4794-2

  • Online ISBN: 978-981-99-4795-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics