Skip to main content

Toxicological Effects of BPDE on Dysfunctions of Female Trophoblast Cells

  • Chapter
  • First Online:
Environment and Female Reproductive Health

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1300))

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are widely spread persistent environmental toxicants. Its typical representative benzo[a]pyrene (BaP) is a human carcinogen. BaP can pass through the placental barrier and is finally metabolized into benzo[a]pyren-7, 8-dihydrodiol-9, 10-epoxide (BPDE). BPDE can form DNA adducts, which directly affect the female reproductive health. Based on the special physiological functions of trophoblast cells and its important effect on normal pregnancy, this chapter describes the toxicity and molecular mechanism of BPDE-induced dysfunctions of trophoblast cells. By affecting the invasion, migration, apoptosis, proliferation, inflammation, and hormone secretion of trophoblast cells, BPDE causes diseases such as choriocarcinoma, intrauterine growth restriction, eclampsia, and abortion. In the end, it is expected to provide a scientific basis and prevention approach for women’s reproductive health and decision-making basis for the formulation of environmental health standards.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee B-E, et al. Secondhand smoke exposure during pregnancy and infantile neurodevelopment. Environ Res. 2011;111(4):539–44.

    Article  CAS  PubMed  Google Scholar 

  2. Perera FP, et al. Effect of prenatal exposure to airborne polycyclic aromatic hydrocarbons on neurodevelopment in the first 3 years of life among inner-city children. Environ Health Perspect. 2006;114(8):1287–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Perera FP, et al. Prenatal airborne polycyclic aromatic hydrocarbon exposure and child IQ at age 5 years. Pediatrics. 2009;124(2):e195–202.

    Article  PubMed  Google Scholar 

  4. Edwards SC, et al. Prenatal exposure to airborne polycyclic aromatic hydrocarbons and children's intelligence at 5 years of age in a prospective cohort study in Poland. Environ Health Perspect. 2010;118(9):1326–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC Monogr Eval Carcinog Risks Hum. 2010;92:1–853.

    PubMed Central  Google Scholar 

  6. Wormley DD, Ramesh A, Hood DB. Environmental contaminant-mixture effects on CNS development, plasticity, and behavior. Toxicol Appl Pharmacol. 2004;197(1):49–65.

    Article  CAS  PubMed  Google Scholar 

  7. Lee BM, Shim GA. Dietary exposure estimation of benzo[a]pyrene and cancer risk assessment. J Toxicol Environ Health A. 2007;70(15–16):1391–4.

    Article  CAS  PubMed  Google Scholar 

  8. Xie Y, et al. Benzo(a)pyrene causes PRKAA1/2-dependent ID2 loss in trophoblast stem cells. Mol Reprod Dev. 2010;77(6):533–9.

    Article  CAS  PubMed  Google Scholar 

  9. Arnould JP, et al. Detection of benzo[a]pyrene-DNA adducts in human placenta and umbilical cord blood. Hum Exp Toxicol. 1997;16(12):716–21.

    Article  CAS  PubMed  Google Scholar 

  10. Mathiesen L, et al. Transport of benzo[alpha]pyrene in the dually perfused human placenta perfusion model: effect of albumin in the perfusion medium. Basic Clin Pharmacol Toxicol. 2009;105(3):181–7.

    Article  CAS  PubMed  Google Scholar 

  11. Neal MS, Zhu J, Foster WG. Quantification of benzo[a]pyrene and other PAHs in the serum and follicular fluid of smokers versus non-smokers. Reprod Toxicol. 2008;25(1):100–6.

    Article  CAS  PubMed  Google Scholar 

  12. Madhavan ND, Naidu KA. Polycyclic aromatic hydrocarbons in placenta, maternal blood, umbilical cord blood and milk of Indian women. Hum Exp Toxicol. 1995;14(6):503–6.

    Article  CAS  PubMed  Google Scholar 

  13. Ptashekas J, et al. Environmental and health monitoring in Lithuanian cities: exposure to heavy metals and benz(a)pyrene in Vilnius and Siauliai residents. J Environ Pathol Toxicol Oncol. 1996;15(2–4):135–41.

    CAS  PubMed  Google Scholar 

  14. Archibong AE, et al. Alteration of pregnancy related hormones and fetal survival in F-344 rats exposed by inhalation to benzo(a)pyrene. Reprod Toxicol. 2002;16(6):801–8.

    Article  CAS  PubMed  Google Scholar 

  15. Wu J, et al. Exposure to polycyclic aromatic hydrocarbons and missed abortion in early pregnancy in a Chinese population. Sci Total Environ. 2010;408(11):2312–8.

    Article  CAS  PubMed  Google Scholar 

  16. Iannaccone PM, Fahl WE, Stols L. Reproductive toxicity associated with endometrial cell mediated metabolism of benzo[a]pyrene: a combined in vitro, in vivo approach. Carcinogenesis. 1984;5(11):1437–42.

    Article  CAS  PubMed  Google Scholar 

  17. Vassilev ZP, Robson MG, Klotz JB. Associations of polycyclic organic matter in outdoor air with decreased birth weight: a pilot cross-sectional analysis. J Toxicol Environ Health A. 2001;64(8):595–605.

    Article  CAS  PubMed  Google Scholar 

  18. Burrows TD, King A, Loke YW. Trophoblast migration during human placental implantation. Hum Reprod Update. 1996;2(4):307–21.

    Article  CAS  PubMed  Google Scholar 

  19. Makri A, et al. Children’s susceptibility to chemicals: a review by developmental stage. J Toxicol Environ Health B Crit Rev. 2004;7(6):417–35.

    Article  CAS  PubMed  Google Scholar 

  20. Barr DB, Bishop A, Needham LL. Concentrations of xenobiotic chemicals in the maternal-fetal unit. Reprod Toxicol. 2007;23(3):260–6.

    Article  CAS  PubMed  Google Scholar 

  21. Weiss G, et al. The trophoblast plug during early pregnancy: a deeper insight. Histochem Cell Biol. 2016;146(6):749–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kadyrov M, et al. Pre-eclampsia and maternal anaemia display reduced apoptosis and opposite invasive phenotypes of extravillous trophoblast. Placenta. 2003;24(5):540–8.

    Article  CAS  PubMed  Google Scholar 

  23. Ball E, et al. Late sporadic miscarriage is associated with abnormalities in spiral artery transformation and trophoblast invasion. J Pathol. 2006;208(4):535–42.

    Article  CAS  PubMed  Google Scholar 

  24. Duley L. Pre-eclampsia and the hypertensive disorders of pregnancy. Br Med Bull. 2003;67:161–76.

    Article  PubMed  Google Scholar 

  25. Karumanchi SA, Granger JP. Preeclampsia and pregnancy-related hypertensive disorders. Hypertension. 2016;67(2):238–42.

    Article  CAS  PubMed  Google Scholar 

  26. Redman CW, Sargent IL. Latest advances in understanding preeclampsia. Science. 2005;308(5728):1592–4.

    Article  CAS  PubMed  Google Scholar 

  27. Cindrova-Davies T, et al. Nuclear factor-kappa B, p38, and stress-activated protein kinase mitogen-activated protein kinase signaling pathways regulate proinflammatory cytokines and apoptosis in human placental explants in response to oxidative stress: effects of antioxidant vitamins. Am J Pathol. 2007;170(5):1511–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Leach RE, et al. Diminished survival of human cytotrophoblast cells exposed to hypoxia/reoxygenation injury and associated reduction of heparin-binding epidermal growth factor-like growth factor. Am J Obstet Gynecol. 2008;198(4):471.e1–7; discussion 471.e7–8.

    Article  CAS  Google Scholar 

  29. Huppertz B. Trophoblast differentiation, fetal growth restriction and preeclampsia. Pregnancy Hypertens. 2011;1(1):79–86.

    Article  PubMed  Google Scholar 

  30. Sgambati E, et al. VEGF expression in the placenta from pregnancies complicated by hypertensive disorders. BJOG. 2004;111(6):564–70.

    Article  CAS  PubMed  Google Scholar 

  31. Li X, et al. Exposure to benzo[a]pyrene impairs decidualization and decidual angiogenesis in mice during early pregnancy. Environ Pollut. 2017;222:523–31.

    Article  CAS  PubMed  Google Scholar 

  32. Liu L, et al. Benzo(a)pyrene inhibits migration and invasion of extravillous trophoblast HTR-8/SVneo cells via activation of the ERK and JNK pathway. J Appl Toxicol. 2016;36(7):946–55.

    Article  PubMed  CAS  Google Scholar 

  33. Wang R, et al. Benzo[a]pyrene-7,8-diol-9,10-epoxide suppresses the migration and invasion of human extravillous trophoblast HTR-8/SVneo cells by down-regulating MMP2 through inhibition of FAK/SRC/PI3K/AKT pathway. Toxicology. 2017;386:72–83.

    Article  CAS  PubMed  Google Scholar 

  34. Tian Z, et al. Benzo[a]pyrene-7, 8-diol-9, 10-epoxide suppresses the migration and invasion of human extravillous trophoblast swan 71 cells due to the inhibited filopodia formation and down-regulated PI3K/AKT/CDC42/PAK1 pathway mediated by the increased miR-194-3p. Toxicol Sci. 2018;166(1):25–38.

    CAS  PubMed  Google Scholar 

  35. Smith SC, Baker PN, Symonds EM. Placental apoptosis in normal human pregnancy. Am J Obstet Gynecol. 1997;177(1):57–65.

    Article  CAS  PubMed  Google Scholar 

  36. Nelson DM. Apoptotic changes occur in syncytiotrophoblast of human placental villi where fibrin type fibrinoid is deposited at discontinuities in the villous trophoblast. Placenta. 1996;17(7):387–91.

    Article  CAS  PubMed  Google Scholar 

  37. Tertemiz F, et al. Apoptosis contributes to vascular lumen formation and vascular branching in human placental vasculogenesis. Biol Reprod. 2005;72(3):727–35.

    Article  CAS  PubMed  Google Scholar 

  38. Halperin R, et al. Placental apoptosis in normal and abnormal pregnancies. Gynecol Obstet Investig. 2000;50(2):84–7.

    Article  CAS  Google Scholar 

  39. Maul RW, Sutton MD. Roles of the Escherichia coli RecA protein and the global SOS response in effecting DNA polymerase selection in vivo. J Bacteriol. 2005;187(22):7607–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang W, et al. Benzo(a)pyren-7,8-dihydrodiol-9,10-epoxide induces human trophoblast Swan 71 cell dysfunctions due to cell apoptosis through disorder of mitochondrial fission/fusion. Environ Pollut. 2018;233:820–32.

    Article  CAS  PubMed  Google Scholar 

  41. Mor G, Koga K. Macrophages and pregnancy. Reprod Sci. 2008;15(5):435–6.

    Article  PubMed  Google Scholar 

  42. Fest S, et al. Trophoblast-macrophage interactions: a regulatory network for the protection of pregnancy. Am J Reprod Immunol. 2007;57(1):55–66.

    Article  PubMed  Google Scholar 

  43. Atay S, et al. Trophoblast-derived exosomes mediate monocyte recruitment and differentiation. Am J Reprod Immunol. 2011;65(1):65–77.

    Article  CAS  PubMed  Google Scholar 

  44. Tuckey RC. Progesterone synthesis by the human placenta. Placenta. 2005;26(4):273–81.

    Article  CAS  PubMed  Google Scholar 

  45. De Marco CS, Caniggia I. Mechanisms of oxygen sensing in human trophoblast cells. Placenta. 2002;23(Suppl A):S58–68.

    Article  PubMed  Google Scholar 

  46. Afanas'ev IB. Signaling functions of free radicals superoxide & nitric oxide under physiological & pathological conditions. Mol Biotechnol. 2007;37(1):2–4.

    Article  CAS  PubMed  Google Scholar 

  47. Valko M, et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84.

    Article  CAS  PubMed  Google Scholar 

  48. Hubel CA. Oxidative stress in the pathogenesis of preeclampsia. Proc Soc Exp Biol Med. 1999;222(3):222–35.

    Article  CAS  PubMed  Google Scholar 

  49. Myatt L. Review: reactive oxygen and nitrogen species and functional adaptation of the placenta. Placenta. 2010;31(Suppl):S66–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Poston L, Raijmakers MT. Trophoblast oxidative stress, antioxidants and pregnancy outcome--a review. Placenta. 2004;25(Suppl A):S72–8.

    Article  CAS  PubMed  Google Scholar 

  51. Jaffe EA, et al. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 1973;52(11):2745–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sobinoff AP, et al. Jumping the gun: smoking constituent BaP causes premature primordial follicle activation and impairs oocyte fusibility through oxidative stress. Toxicol Appl Pharmacol. 2012;260(1):70–80.

    Article  CAS  PubMed  Google Scholar 

  53. Lenaers G, et al. OPA1 functions in mitochondria and dysfunctions in optic nerve. Int J Biochem Cell Biol. 2009;41(10):1866–74.

    Article  CAS  PubMed  Google Scholar 

  54. Paulesu L, et al. hCG and its disruption by environmental contaminants during human pregnancy. Int J Mol Sci. 2018;19(3):914.

    Article  PubMed Central  CAS  Google Scholar 

  55. Fournier T, Guibourdenche J, Evain-Brion D. Review: hCGs: different sources of production, different glycoforms and functions. Placenta. 2015;36(Suppl 1):S60–5.

    Article  CAS  PubMed  Google Scholar 

  56. Hay DL. Placental histology and the production of human choriogonadotrophin and its subunits in pregnancy. Br J Obstet Gynaecol. 1988;95(12):1268–75.

    Article  CAS  PubMed  Google Scholar 

  57. Takamiya M, Lambard S, Huhtaniemi IT. Effect of bisphenol A on human chorionic gonadotrophin-stimulated gene expression of cultured mouse Leydig tumour cells. Reprod Toxicol. 2007;24(2):265–75.

    Article  CAS  PubMed  Google Scholar 

  58. Detmar J, et al. Embryonic loss due to exposure to polycyclic aromatic hydrocarbons is mediated by Bax. Apoptosis. 2006;11(8):1413–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huidong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, R., Huang, X., Ma, C., Zhang, H. (2021). Toxicological Effects of BPDE on Dysfunctions of Female Trophoblast Cells. In: Zhang, H., Yan, J. (eds) Environment and Female Reproductive Health. Advances in Experimental Medicine and Biology, vol 1300. Springer, Singapore. https://doi.org/10.1007/978-981-33-4187-6_7

Download citation

Publish with us

Policies and ethics