Skip to main content

Carbon Sequestration and Greenhouse Gas Emissions Reductions in Agriculture: Strategies and Their Economic Feasibility

  • Chapter
  • First Online:
Carbon-Neutral Pathways for China: Economic Issues

Abstract

Agriculture has the great potential to make a substantial contribution to net-zero emissions progress. This chapter conducts a comprehensive review of the literature on the strategies for agricultural carbon sequestration and GHG emissions reductions and their economic feasibility. A general lesson from this review is that carbon sequestration and GHG emissions reductions in agriculture is potentially attractive, depending on the environmental conditions, socioeconomic contexts and strategies analysed. Various agricultural strategies have been identified as appropriate measures to increase carbon sequestration and/or reduce GHG emissions, including conservation tillage, crop rotations, continuous cropping, residue retention, improved fertilisation, and afforestation. Adopting conservative tillage and continuous cropping might be economically feasible, while the economic feasibility for crop rotations varies across regions. Studies on the economic feasibility of improved fertilisation and residue retention provide mixed findings. The economic variable costs of afforestation in developing countries are relatively lower than the costs in developed countries. More considerations of co-benefits should be integrated into relevant climate policies. We need to further improve our recognition and understanding of the policy-making of agricultural climate policies, thereby substantially increasing their effectiveness and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.iaea.org/topics/greenhouse-gas-reduction.

References

  • Ahmed, J., Almeida, E., Aminetzah, D., Denis, N., Henderson, K., Katz, J., Kitchel, H., & Mannion, P. (2020). Agriculture and climate change: Reducing emissions through improved farming practices. McKinsey &Company. https://www.mckinsey.com/~/media/mckinsey/industries/agriculture/our%20insights/reducing%20agriculture%20emissions%20through%20improved%20farming%20practices/agriculture-and-climate-change.pdf

  • Albrecht, A., & Kandji, S. T. (2003). Carbon sequestration in tropical agroforestry systems. Agriculture, Ecosystems & Environment, 99(1-3), 15-27.

    Article  Google Scholar 

  • Ameray, A., Bergeron, Y., Valeria, O., Montoro Girona, M., & Cavard, X. (2021). Forest carbon management: A review of silvicultural practices and management strategies across boreal, temperate and tropical forests. Current Forestry Reports, 7(4), 245-266.

    Article  Google Scholar 

  • Anderson, J. A., Long, A., & Luckert, M. K. (2015). A financial analysis of establishing poplar plantations for carbon offsets using Alberta and British Columbia’s afforestation protocols. Canadian Journal of Forest Research, 45(2), 207-216.

    Article  Google Scholar 

  • Antle, J. M., Capalbo, S. M., Mooney, S., Elliott, E. T., & Paustian, K. H. (2001). Economic analysis of agricultural soil carbon sequestration: An integrated assessment approach. Journal of Agricultural and Resource Economics, 26(2): 344-367.

    Google Scholar 

  • Antle, J., Capalbo, S., Mooney, S., Elliott, E. T., & Paustian, K. H. (2002). Sensitivity of carbon sequestration costs to soil carbon rates. Environmental Pollution, 116(3), 413-422.

    Article  MATH  Google Scholar 

  • Antle, J. M., Capalbo, S. M., Paustian, K., & Ali, M. K. (2007). Estimating the economic potential for agricultural soil carbon sequestration in the Central United States using an aggregate econometric-process simulation model. Climatic Change, 80(1), 145-171.

    Article  Google Scholar 

  • Arora, V. K., & Montenegro, A. (2011). Small temperature benefits provided by realistic afforestation efforts. Nature Geoscience, 4(8), 514-518.

    Article  Google Scholar 

  • Arshad, M. A., Franzluebbers, A. J., & Azooz, R. H. (1999). Components of surface soil structure under conventional and no-tillage in northwestern Canada. Soil and Tillage Research, 53(1), 41-47.

    Article  Google Scholar 

  • Baker, J. M., Ochsner, T. E., Venterea, R. T., & Griffis, T. J. (2007). Tillage and soil carbon sequestration: What do we really know?. Agriculture, Ecosystems & Environment, 118(1-4), 1-5.

    Article  Google Scholar 

  • Bellassen, V., & Gitz, V. (2008). Reducing emissions from deforestation and degradation in Cameroon—assessing costs and benefits. Ecological Economics, 68(1), 336-344.

    Article  Google Scholar 

  • Bennetzen, E. H., Smith, P., & Porter, J. R. (2016). Decoupling of greenhouse gas emissions from global agricultural production: 1970–2050. Global Change Biology, 22(2), 763-781.

    Article  Google Scholar 

  • Brown, C., Alexander, P., Arneth, A., Holman, I., & Rounsevell, M. (2019). Achievement of Paris climate goals unlikely due to time lags in the land system. Nature Climate Change, 9(3), 203-208.

    Article  Google Scholar 

  • Bunker, D. E., DeClerck, F., Bradford, J. C., Colwell, R. K., Perfecto, I., Phillips, O. L., Sankaran, M., & Naeem, S. (2005). Species loss and aboveground carbon storage in a tropical forest. Science, 310(5750), 1029-1031.

    Article  Google Scholar 

  • Cacho, O. J., Hean, R. L., & Wise, R. M. (2003). Carbon-accounting methods and reforestation incentives. Australian Journal of Agricultural and Resource Economics, 47(2), 153-179.

    Article  Google Scholar 

  • Cai, Y., Chang, S. X., & Cheng, Y. (2017). Greenhouse gas emissions from excreta patches of grazing animals and their mitigation strategies. Earth-Science Reviews, 171, 44-57.

    Article  Google Scholar 

  • Campbell, C. A., Janzen, H. H., Paustian, K., Gregorich, E. G., Sherrod, L., Liang, B. C., & Zentner, R. P. (2005). Carbon storage in soils of the North American Great Plains: Effect of cropping frequency. Agronomy Journal, 97(2), 349-363.

    Article  Google Scholar 

  • Cania, B., Vestergaard, G., Krauss, M., Fliessbach, A., Schloter, M., & Schulz, S. (2019). A long-term field experiment demonstrates the influence of tillage on the bacterial potential to produce soil structure-stabilizing agents such as exopolysaccharides and lipopolysaccharides. Environmental Microbiome, 14(1), 1-14.

    Article  Google Scholar 

  • Chang, N., Zhai, Z., Li, H., Wang, L., & Deng, J. (2020). Impacts of nitrogen management and organic matter application on nitrous oxide emissions and soil organic carbon from spring maize fields in the North China Plain. Soil and Tillage Research, 196, 104441.

    Article  Google Scholar 

  • Chen, H., Dai, Z., Veach, A. M., Zheng, J., Xu, J., & Schadt, C. W. (2020). Global meta-analyses show that conservation tillage practices promote soil fungal and bacterial biomass. Agriculture, Ecosystems & Environment, 293, 106841.

    Article  Google Scholar 

  • Chen, J., Gong, Y., Wang, S., Guan, B., Balkovic, J., & Kraxner, F. (2019). To burn or retain crop residues on croplands? An integrated analysis of crop residue management in China. Science of The Total Environment, 662, 141-150.

    Article  Google Scholar 

  • Choi, S. W., & Sohngen, B. (2010). The optimal choice of residue management, crop rotations, and cost of carbon sequestration: Empirical results in the Midwest US. Climatic Change, 99(1), 279-294.

    Article  Google Scholar 

  • Chowdhury, S., Bolan, N., Farrell, M., Sarkar, B., Sarker, J. R., Kirkham, M. B., Hossain, M.Z., & Kim, G. H. (2021). Role of cultural and nutrient management practices in carbon sequestration in agricultural soil. Advances in Agronomy, 166, 131-196.

    Article  Google Scholar 

  • Crippa, M., Solazzo, E., Guizzardi, D., Monforti-Ferrario, F., Tubiello, F. N., & Leip, A. J. N. F. (2021). Food systems are responsible for a third of global anthropogenic GHG emissions. Nature Food, 2(3), 198-209.

    Article  Google Scholar 

  • Daigneault, A., Greenhalgh, S., & Samarasinghe, O. (2018). Economic impacts of multiple agro-environmental policies on New Zealand land use. Environmental and Resource Economics, 69(4), 763-785.

    Article  Google Scholar 

  • Das, S., & Adhya, T. K. (2014). Effect of combine application of organic manure and inorganic fertilizer on methane and nitrous oxide emissions from a tropical flooded soil planted to rice. Geoderma, 213, 185-192.

    Article  Google Scholar 

  • Davis, S. J., Lewis, N. S., Shaner, M., et al. (2018). Net-zero emissions energy systems. Science, 360(6396), eaas9793.

    Google Scholar 

  • De Jong, B. H., Tipper, R., & Montoya-Gómez, G. (2000). An economic analysis of the potential for carbon sequestration by forests: Evidence from southern Mexico. Ecological Economics, 33(2), 313-327.

    Article  Google Scholar 

  • Dębska, B., Długosz, J., Piotrowska-Długosz, A., & Banach-Szott, M. (2016). The impact of a bio-fertilizer on the soil organic matter status and carbon sequestration: Results from a field-scale study. Journal of Soils and Sediments, 16(10), 2335-2343.

    Article  Google Scholar 

  • Deiss, L., Sall, A., Demyan, M. S., & Culman, S. W. (2021). Does crop rotation affect soil organic matter stratification in tillage systems?. Soil and Tillage Research, 209, 104932.

    Article  Google Scholar 

  • Ding, X., Han, X., Liang, Y., Qiao, Y., Li, L., & Li, N. (2012). Changes in soil organic carbon pools after 10 years of continuous manuring combined with chemical fertilizer in a Mollisol in China. Soil and Tillage Research, 122, 36-41.

    Article  Google Scholar 

  • Djanibekov, U., & Khamzina, A. (2016). Stochastic economic assessment of afforestation on marginal land in irrigated farming system. Environmental and Resource Economics, 63(1), 95-117.

    Article  Google Scholar 

  • Duffy, C., O'Donoghue, C., Ryan, M., Styles, D., & Spillane, C. (2020). Afforestation: Replacing livestock emissions with carbon sequestration. Journal of Environmental Management, 264, 110523.

    Article  Google Scholar 

  • Duiker, S. W., & Lal, R. (1999). Crop residue and tillage effects on carbon sequestration in a Luvisol in central Ohio. Soil and Tillage Research, 52(1-2), 73-81.

    Article  Google Scholar 

  • Dumbrell, N. P., Kragt, M. E., & Gibson, F. L. (2016). What carbon farming activities are farmers likely to adopt? A best–worst scaling survey. Land Use Policy, 54, 29-37.

    Article  Google Scholar 

  • Eory, V., Topp, C. F., Butler, A., & Moran, D. (2018). Addressing uncertainty in efficient mitigation of agricultural greenhouse gas emissions. Journal of Agricultural Economics, 69(3), 627-645.

    Article  Google Scholar 

  • Eriksson, M. (2020). Afforestation and avoided deforestation in a multi-regional integrated assessment model. Ecological Economics, 169, 106452.

    Article  Google Scholar 

  • Fan, T., Stewart, B. A., Payne, W. A., Yong, W., Luo, J., & Gao, Y. (2005). Long‐term fertilizer and water availability effects on cereal yield and soil chemical properties in northwest China. Soil Science Society of America Journal, 69(3), 842-855.

    Article  Google Scholar 

  • FAO (2022). FAOSTAT Emissions Totals, FAO. https://www.fao.org/faostat/en/#data/GT

  • Fisher, B., Lewis, S. L., Burgess, N. D., Malimbwi, R. E., Munishi, P. K., Swetnam, R. D., Kerry Turner, R., Willcock, S., & Balmford, A. (2011). Implementation and opportunity costs of reducing deforestation and forest degradation in Tanzania. Nature Climate Change, 1(3), 161-164.

    Article  Google Scholar 

  • Fleming, A., Stitzlein, C., Jakku, E., & Fielke, S. (2019). Missed opportunity? Framing actions around co-benefits for carbon mitigation in Australian agriculture. Land Use Policy, 85, 230-238.

    Article  Google Scholar 

  • Flugge, F., & Abadi, A. (2006). Farming carbon: an economic analysis of agroforestry for carbon sequestration and dryland salinity reduction in Western Australia. Agroforestry Systems, 68:181-192.

    Article  Google Scholar 

  • Fujimori, S., Wu, W., Doelman, J., Frank, S., Hristov, J., Kyle, P., Sands, R., Van Zeist, W.J., Havlik, P., Domínguez, I.P., & Takahashi, K. (2022). Land-based climate change mitigation measures can affect agricultural markets and food security. Nature Food, 3(2), 110-121.

    Article  Google Scholar 

  • Gao, Y., Zhu, X., Yu, G., He, N., Wang, Q., & Tian, J. (2014). Water use efficiency threshold for terrestrial ecosystem carbon sequestration in China under afforestation. Agricultural and Forest Meteorology, 195, 32-37.

    Article  Google Scholar 

  • Garcia-Franco, N., Martínez-Mena, M., Goberna, M., & Albaladejo, J. (2015). Changes in soil aggregation and microbial community structure control carbon sequestration after afforestation of semiarid shrublands. Soil Biology and Biochemistry, 87, 110-121.

    Article  Google Scholar 

  • González-Estrada, E., Rodriguez, L. C., Walen, V. K., Naab, J. B., Koo, J., Jones, J. W., Herrero, M., & Thornton, P. K. (2008). Carbon sequestration and farm income in West Africa: Identifying best management practices for smallholder agricultural systems in northern Ghana. Ecological Economics, 67(3), 492-502.

    Article  Google Scholar 

  • Grace, P. R., Antle, J., Aggarwal, P. K., Ogle, S., Paustian, K., & Basso, B. (2012). Soil carbon sequestration and associated economic costs for farming systems of the Indo-Gangetic Plain: A meta-analysis. Agriculture, Ecosystems & Environment, 146(1), 137-146.

    Article  Google Scholar 

  • Grace, P. R., Antle, J., Ogle, S., Paustian, K., & Basso, B. (2010). Soil carbon sequestration rates and associated economic costs for farming systems of south-eastern Australia. Soil Research, 48(8), 720-729.

    Article  Google Scholar 

  • Gramig, B. M., & Widmar, N. J. (2018). Farmer preferences for agricultural soil carbon sequestration schemes. Applied Economic Perspectives and Policy, 40(3), 502-521.

    Article  Google Scholar 

  • Grutzmacher, P., Puga, A. P., Bibar, M. P. S., Coscione, A. R., Packer, A. P., & de Andrade, C. A. (2018). Carbon stability and mitigation of fertilizer induced N2O emissions in soil amended with biochar. Science of the Total Environment, 625, 1459-1466.

    Article  Google Scholar 

  • Gütschow, J., Jeffery L., & Gieseke, R. (2021). The PRIMAP-hist national historical emissions time series v2.3 (1850–2017), GFZ Data Services. https://doi.org/10.5880/pik.2019.001

  • Haefele, S. M., Konboon, Y., Wongboon, W., Amarante, S., Maarifat, A. A., Pfeiffer, E. M., & Knoblauch, C. J. F. C. R. (2011). Effects and fate of biochar from rice residues in rice-based systems. Field Crops Research, 121(3), 430-440.

    Article  Google Scholar 

  • Haim, D., White, E. M., & Alig, R. J. (2016). Agriculture afforestation for carbon sequestration under carbon markets in the United States: Leakage behavior from regional allowance programs. Applied Economic Perspectives and Policy, 38(1), 132-151.

    Article  Google Scholar 

  • Hati, K. M., Mandal, K. G., Misra, A. K., Ghosh, P. K., & Bandyopadhyay, K. K. (2006). Effect of inorganic fertilizer and farmyard manure on soil physical properties, root distribution, and water-use efficiency of soybean in Vertisols of central India. Bioresource Technology, 97(16), 2182-2188.

    Article  Google Scholar 

  • Henry, L. A., & Tysiachniouk, M. (2018). The uneven response to global environmental governance: Russia's contentious politics of forest certification. Forest Policy and Economics, 90, 97-105.

    Article  Google Scholar 

  • Hijbeek, R., Loon, M. P. V., & Ittersum, M. K. V. (2019). Fertiliser use and soil carbon sequestration: Trade-offs and opportunities. CCAFS Working Paper No 264. CGIAR Research Program on Climate Change (CCAFS).

    Google Scholar 

  • Hoang, M. H., Do, T. H., Pham, M. T., van Noordwijk, M., & Minang, P. A. (2013). Benefit distribution across scales to reduce emissions from deforestation and forest degradation (REDD+) in Vietnam. Land Use Policy, 31, 48-60.

    Article  Google Scholar 

  • Hunt, C. (2008). Economy and ecology of emerging markets and credits for bio-sequestered carbon on private land in tropical Australia. Ecological Economics, 66(2), 309-318.

    Article  Google Scholar 

  • Jarecki, M., Grant, B., Smith, W., Deen, B., Drury, C., VanderZaag, A., Qian, B., Yang, J., & Wagner‐Riddle, C. (2018). Long‐term trends in corn yields and soil carbon under diversified crop rotations. Journal of Environmental Quality, 47(4), 635-643.

    Article  Google Scholar 

  • Jastrow, J. D., Amonette, J. E., & Bailey, V. L. (2007). Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Climatic Change, 80(1), 5-23.

    Article  Google Scholar 

  • Khakbazan, M., Mohr, R. M., Derksen, D. A., et al. (2009). Effects of alternative management practices on the economics, energy and GHG emissions of a wheat–pea cropping system in the Canadian prairies. Soil and Tillage Research, 104(1), 30-38.

    Article  Google Scholar 

  • Kovacs, K. F., Haight, R. G., Moore, K., & Popp, M. (2021). Afforestation for carbon sequestration in the Lower Mississippi River Basin of Arkansas, USA: Does modeling of land use at fine spatial resolution reveal lower carbon cost?. Forest Policy and Economics, 130, 102526.

    Article  Google Scholar 

  • Köchy, M., Hiederer, R., & Freibauer, A. (2015). Global distribution of soil organic carbon–Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. Soil, 1(1), 351-365.

    Article  Google Scholar 

  • Kragt, M. E., Gibson, F. L., Maseyk, F., & Wilson, K. A. (2016). Public willingness to pay for carbon farming and its co-benefits. Ecological Economics, 126, 125-131.

    Article  Google Scholar 

  • Kragt, M. E., Pannell, D. J., Robertson, M. J., & Thamo, T. (2012). Assessing costs of soil carbon sequestration by crop-livestock farmers in Western Australia. Agricultural Systems, 112, 27-37.

    Article  Google Scholar 

  • Krauss, M., Wiesmeier, M., Don, A., Cuperus, F., Gattinger, A., Gruber, S., Haagsma, W. K., Peigné, J., Palazzoli, M. C., Schulz, F., & Steffens, M. (2022). Reduced tillage in organic farming affects soil organic carbon stocks in temperate Europe. Soil and Tillage Research, 216, 105262.

    Article  Google Scholar 

  • Kucuker, D. M. (2019). Analyzing the effects of various forest management strategies and carbon prices on carbon dynamics in western Turkey. Journal of Environmental Management, 249, 109356.

    Article  Google Scholar 

  • Kumar, N., Nath, C. P., Hazra, K. K., Das, K., Venkatesh, M. S., Singh, M. K., Singh, S. S., Praharaj, C. S., & Singh, N. P. (2019). Impact of zero-till residue management and crop diversification with legumes on soil aggregation and carbon sequestration. Soil and Tillage Research, 189, 158-167.

    Article  Google Scholar 

  • Laborde, D., Mamun, A., Martin, W., Piñeiro, V., & Vos, R. (2021). Agricultural subsidies and global greenhouse gas emissions. Nature Communications, 12(1), 1-9.

    Article  Google Scholar 

  • Lal, R. (1997). Residue management, conservation tillage and soil restoration for mitigating greenhouse effect by CO2-enrichment. Soil and tillage research, 43(1-2), 81-107.

    Article  Google Scholar 

  • Lal, R. (2003). Global potential of soil carbon sequestration to mitigate the greenhouse effect. Critical Reviews in Plant Sciences, 22(2), 151-184.

    Article  Google Scholar 

  • Lal, R., Negassa, W., & Lorenz, K. (2015). Carbon sequestration in soil. Current Opinion in Environmental Sustainability, 15, 79-86.

    Article  Google Scholar 

  • Lam, S. K., Chen, D., Mosier, A. R., & Roush, R. (2013). The potential for carbon sequestration in Australian agricultural soils is technically and economically limited. Scientific Reports, 3(1), 1-6.

    Article  Google Scholar 

  • Lamb, A., Green, R., Bateman, I., et al. (2016). The potential for land sparing to offset greenhouse gas emissions from agriculture. Nature Climate Change, 6(5), 488-492.

    Article  Google Scholar 

  • Lamb, W. F., Grubb, M., Diluiso, F., & Minx, J. C. (2022). Countries with sustained greenhouse gas emissions reductions: An analysis of trends and progress by sector. Climate Policy, 22(1), 1-17.

    Article  Google Scholar 

  • Lang, A. C., von Oheimb, G., Scherer‐Lorenzen, M., Yang, B., Trogisch, S., Bruelheide, H., Ma, K., & Härdtle, W. (2014). Mixed afforestation of young subtropical trees promotes nitrogen acquisition and retention. Journal of Applied Ecology, 51(1), 224-233.

    Article  Google Scholar 

  • Li, F., Yu, J., Nong, M., Kang, S., & Zhang, J. (2010). Partial root-zone irrigation enhanced soil enzyme activities and water use of maize under different ratios of inorganic to organic nitrogen fertilizers. Agricultural Water Management, 97(2), 231-239.

    Article  Google Scholar 

  • Li, Y., Zhang, Q., Cai, Y., Yang, Q., & Chang, S. X. (2020). Minimum tillage and residue retention increase soil microbial population size and diversity: Implications for conservation tillage. Science of the Total Environment, 716, 137164.

    Article  Google Scholar 

  • Liang, A. Z., Yang, X. M., Zhang, X. P., Chen, X. W., Mclaughlin, N. B., Wei, S. C., Zhang, Y., Jia, S. X., & Zhang, S. X. (2016). Changes in soil organic carbon stocks under 10-year conservation tillage on a Black soil in Northeast China. The Journal of Agricultural Science, 154(8), 1425-1436.

    Article  Google Scholar 

  • Lin, Y., Ye, G., Kuzyakov, Y., Liu, D., Fan, J., & Ding, W. (2019). Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa. Soil Biology and Biochemistry, 134, 187-196.

    Article  Google Scholar 

  • Liu, X., Herbert, S. J., Hashemi, A. M., Zhang, X. F., & Ding, G. (2006). Effects of agricultural management on soil organic matter and carbon transformation-a review. Plant Soil and Environment, 52(12), 531.

    Article  Google Scholar 

  • Liu, X., Trogisch, S., He, J. S., Niklaus, P. A., Bruelheide, H., Tang, Z., Erfmeier, A., Scherer-Lorenzen, M., Pietsch, K. A., Yang, B., & Ma, K. (2018). Tree species richness increases ecosystem carbon storage in subtropical forests. Proceedings of the Royal Society B, 285(1885), 20181240.

    Article  Google Scholar 

  • Machado, S., Rhinhart, K., & Petrie, S. (2006). Long‐term cropping system effects on carbon sequestration in eastern Oregon. Journal of Environmental Quality, 35(4), 1548-1553.

    Article  Google Scholar 

  • Man, M., Wagner-Riddle, C., Dunfield, K. E., Deen, B., & Simpson, M. J. (2021). Long-term crop rotation and different tillage practices alter soil organic matter composition and degradation. Soil and Tillage Research, 209, 104960.

    Article  Google Scholar 

  • Manley, B. (2018). Forecasting the effect of carbon price and log price on the afforestation rate in New Zealand. Journal of Forest Economics, 33, 112-120.

    Article  Google Scholar 

  • Manley, B. (2020). Impact on profitability, risk, optimum rotation age and afforestation of changing the New Zealand emissions trading scheme to an averaging approach. Forest Policy and Economics, 116, 102205.

    Article  Google Scholar 

  • Maraseni, T., & Kodur, S. (2019). Improved prediction of farm nitrous oxide emission through an understanding of the interaction among climate extremes, soil nitrogen dynamics and irrigation water. Journal of Environmental Management, 248, 109278.

    Article  Google Scholar 

  • McDaniel, M. D., Tiemann, L. K., & Grandy, A. S. (2014). Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta‐analysis. Ecological Applications, 24(3), 560-570

    Google Scholar 

  • Min, J., Lu, K., Sun, H., Xia, L., Zhang, H., & Shi, W. (2016). Global warming potential in an intensive vegetable cropping system as affected by crop rotation and nitrogen rate. CLEAN–Soil, Air, Water, 44(7), 766–774.

    Google Scholar 

  • Minasny, B., Malone, B. P., McBratney, A. B., et al. (2017). Soil carbon 4 per mille. Geoderma, 292, 59-86.

    Article  Google Scholar 

  • Mondal, S., Chakraborty, D., Bandyopadhyay, K., Aggarwal, P., & Rana, D. S. (2020). A global analysis of the impact of zero‐tillage on soil physical condition, organic carbon content, and plant root response. Land Degradation & Development, 31(5), 557-567.

    Article  Google Scholar 

  • Monge, J. J., Bryant, H. L., Gan, J., & Richardson, J. W. (2016). Land use and general equilibrium implications of a forest-based carbon sequestration policy in the United States. Ecological Economics, 127, 102-120.

    Article  Google Scholar 

  • Moran, D., & Wall, E. (2011). Livestock production and greenhouse gas emissions: Defining the problem and specifying solutions. Animal Frontiers, 1(1), 19-25.

    Article  Google Scholar 

  • Muller, A., Jawtusch, J., & Gattinger, A. (2011). Mitigating greenhouse gases in agriculture: A challenge and opportunity for agricultural policies. Diakonisches Werk der EKD e.V. for Brot für die Welt. https://orgprints.org/id/eprint/19989/1/gatti.pdf

  • Nayak, D. R., Babu, Y. J., Datta, A., & Adhya, T. K. (2007). Methane oxidation in an intensively cropped tropical rice field soil under long‐term application of organic and mineral fertilizers. Journal of Environmental Quality, 36(6), 1577-1584.

    Article  Google Scholar 

  • Nielsen, A. S. E., Plantinga, A. J., & Alig, R. J. (2014). Mitigating climate change through afforestation: New cost estimates for the United States. Resource and Energy Economics, 36(1), 83-98.

    Article  Google Scholar 

  • Nijnik, M. (2004). Economics of climate change mitigation forest policy scenarios for Ukraine. Climate Policy, 4(3), 319-336.

    Article  Google Scholar 

  • Nijnik, M., & Halder, P. (2013). Afforestation and reforestation projects in South and South-East Asia under the Clean Development Mechanism: Trends and development opportunities. Land Use Policy, 31, 504-515.

    Article  Google Scholar 

  • Niu, X., & Duiker, S. W. (2006). Carbon sequestration potential by afforestation of marginal agricultural land in the Midwestern US. Forest Ecology and Management, 223(1-3), 415-427.

    Article  Google Scholar 

  • Niu, Y., Chen, Z., Müller, C., Zaman, M. M., Kim, D., Yu, H., & Ding, W. (2017). Yield-scaled N2O emissions were effectively reduced by biochar amendment of sandy loam soil under maize-wheat rotation in the North China Plain. Atmospheric Environment, 170, 58-70.

    Article  Google Scholar 

  • Northrup, D. L., Basso, B., Wang, M. Q., Morgan, C. L., & Benfey, P. N. (2021). Novel technologies for emission reduction complement conservation agriculture to achieve negative emissions from row-crop production. Proceedings of the National Academy of Sciences, 118(28), e2022666118.

    Article  Google Scholar 

  • Olschewski, R., Benitez, P. C., De Koning, G. H. J., & Schlichter, T. (2005). How attractive are forest carbon sinks? Economic insights into supply and demand of certified emission reductions. Journal of Forest Economics, 11(2), 77-94.

    Article  Google Scholar 

  • Osman, A. I., Fawzy, S., Farghali, M., El-Azazy, M., Elgarahy, A. M., Fahim, R. A., Maksoud, M. I. A., Ajlan, A. A., Yousry, M., Saleem, Y., & Rooney, D. W. (2022). Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: A review. Environmental Chemistry Lettershttps://doi.org/10.1007/s10311-022-01424-x

    Article  Google Scholar 

  • Ovando, P., Oviedo, J. L., & Campos, P. (2016). Measuring total social income of a stone pine afforestation in Huelva (Spain). Land Use Policy, 50, 479-489.

    Article  Google Scholar 

  • Pala, M., Ryan, J., Zhang, H., Singh, M., & Harris, H. C. (2007). Water-use efficiency of wheat-based rotation systems in a Mediterranean environment. Agricultural Water Management, 93(3), 136-144.

    Article  Google Scholar 

  • Pampolino, M. F., Laureles, E. V., Gines, H. C., & Buresh, R. J. (2008). Soil carbon and nitrogen changes in long‐term continuous lowland rice cropping. Soil Science Society of America Journal, 72(3), 798-807.

    Article  Google Scholar 

  • Parks, P. J., & Hardie, I. W. (1995). Least-cost forest carbon reserves: Cost-effective subsidies to convert marginal agricultural land to forests. Land Economics, 71(1): 122-136.

    Article  Google Scholar 

  • Paul, K. I., Reeson, A., Polglase, P., Crossman, N., Freudenberger, D., & Hawkins, C. (2013). Economic and employment implications of a carbon market for integrated farm forestry and biodiverse environmental plantings. Land Use Policy, 30(1), 496-506.

    Article  Google Scholar 

  • Pendell, D. L., Williams, J. R., Boyles, S. B., Rice, C. W., & Nelson, R. G. (2007). Soil carbon sequestration strategies with alternative tillage and nitrogen sources under risk. Applied Economic Perspectives and Policy, 29(2), 247-268.

    Google Scholar 

  • Persson, T., Bergkvist, G., & Kätterer, T. (2008). Long-term effects of crop rotations with and without perennial leys on soil carbon stocks and grain yields of winter wheat. Nutrient Cycling in Agroecosystems, 81(2), 193-202.

    Article  Google Scholar 

  • Polglase, P. J., Reeson, A., Hawkins, C. S., Paul, K. I., Siggins, A. W., Turner, J., Crawford, D. F., Jovanovic, T., Hobbs, T. J., Opie, K., & Almeida, A. (2013). Potential for forest carbon plantings to offset greenhouse emissions in Australia: economics and constraints to implementation. Climatic Change, 121(2), 161-175.

    Article  Google Scholar 

  • Powlson, D. S., Poulton, P. R., Macdonald, A. J., Johnston, A. E., White, R. P., & Goulding, K. W. T. (2018). 4 per mille—Is it feasible to sequester soil carbon at this rate annually in agricultural soils? In Proceedings of the IFS Agronomic Conference, Cambridge, UK, 6–7 December 2018.

    Google Scholar 

  • Powlson, D. S., Stirling, C. M., Thierfelder, C., White, R. P., & Jat, M. L. (2016). Does conservation agriculture deliver climate change mitigation through soil carbon sequestration in tropical agro-ecosystems?. Agriculture, Ecosystems & Environment, 220, 164-174.

    Article  Google Scholar 

  • Rahmati, M., Eskandari, I., Kouselou, M., Feiziasl, V., Mahdavinia, G. R., Aliasgharzad, N., & McKenzie, B. M. (2020). Changes in soil organic carbon fractions and residence time five years after implementing conventional and conservation tillage practices. Soil and Tillage Research, 200, 104632.

    Article  Google Scholar 

  • Raihan, A., Begum, R. A., Mohd Said, M. N., & Abdullah, S. M. S. (2019). A review of emission reduction potential and cost savings through forest carbon sequestration. Asian Journal of Water, Environment and Pollution, 16(3), 1-7.

    Article  Google Scholar 

  • Reeves, D. W. (1997). The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil and Tillage Research, 43(1-2), 131-167.

    Article  Google Scholar 

  • Regan, C. M., Connor, J. D., Summers, D. M., Settre, C., O’Connor, P. J., & Cavagnaro, T. R. (2020). The influence of crediting and permanence periods on Australian forest-based carbon offset supply. Land Use Policy, 97, 104800.

    Article  Google Scholar 

  • Richards, M. B., Wollenberg, E., & Buglion-Gluck, S. (2015). Agriculture’s Contributions to National Emissions. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen.

    Google Scholar 

  • Russell, A. E., Laird, D. A., & Mallarino, A. P. (2006). Nitrogen fertilization and cropping system impacts on soil quality in Midwestern Mollisols. Soil Science Society of America Journal, 70(1), 249-255.

    Article  Google Scholar 

  • Sanginga, N. (2003). Role of biological nitrogen fixation in legume based cropping systems; A case study of West Africa farming systems. Plant and Soil, 252(1), 25-39.

    Article  Google Scholar 

  • Sanz-Cobena, A., Lassaletta, L., Aguilera, E., del Prado, A., Garnier, J., Billen, G., Iglesias, A., Sanchez, B., Guardia, G., Abalos, D., & Smith, P. (2017). Strategies for greenhouse gas emissions mitigation in Mediterranean agriculture: A review. Agriculture, Ecosystems & Environment, 238, 5-24.

    Article  Google Scholar 

  • Saunois, M., Stavert, A. R., Poulter, B., et al. (2020). The global methane budget 2000–2017. Earth System Science Data, 12(3), 1561-1623.

    Article  Google Scholar 

  • Schipper, L. A., Baisden, W. T., Parfitt, R. L., Ross, C., Claydon, J. J., & Arnold, G. (2007). Large losses of soil C and N from soil profiles under pasture in New Zealand during the past 20 years. Global Change Biology, 13(6), 1138-1144.

    Article  Google Scholar 

  • Sherrod, L. A., Peterson, G. A., Westfall, D. G., & Ahuja, L. R. (2003). Cropping intensity enhances soil organic carbon and nitrogen in a no‐till agroecosystem. Soil Science Society of America Journal, 67(5), 1533-1543.

    Article  Google Scholar 

  • Six, J., Frey, S. D., Thiet, R. K., & Batten, K. M. (2006). Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Science Society of America Journal, 70(2), 555-569.

    Article  Google Scholar 

  • Smith, P., & Olesen, J. E. (2010). Synergies between the mitigation of, and adaptation to, climate change in agriculture. The Journal of Agricultural Science, 148(5), 543-552.

    Article  Google Scholar 

  • Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O’Mara, F., Rice, C., & Towprayoon, S. (2007). Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agriculture, Ecosystems & Environment, 118(1-4), 6-28.

    Article  Google Scholar 

  • Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O'Mara, F., Rice, C., Scholes, B., Sirotenko, O., Howden, M., McAllister, T., Pan, G., Romanenkov, V., Schneider, U., Towprayoon, S., Wattenbach, M., & Smith, J. (2008). Greenhouse gas mitigation in agriculture. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 363(1492), 789–813.

    Google Scholar 

  • Srinivasarao, C., Deshpande, A. N., Venkateswarlu, B., Lal, R., Singh, A. K., Kundu, S., Vittal, K. P. R., Mishra, P. K., Prasad, J. V. N. S., Mandal, U. K., & Sharma, K. L. (2012). Grain yield and carbon sequestration potential of post monsoon sorghum cultivation in Vertisols in the semi arid tropics of central India. Geoderma, 175, 90-97.

    Article  Google Scholar 

  • Stavins, R. N. (1999). The cost of carbon sequestration: A revealed-preference approach. American Economic Review, 89(4): 994-1009.

    Article  Google Scholar 

  • Sun, W., Canadell, J. G., Yu, L., Yu, L., Zhang, W., Smith, P., Fischer, T., & Huang, Y. (2020). Climate drives global soil carbon sequestration and crop yield changes under conservation agriculture. Global Change Biology, 26(6), 3325-3335.

    Article  Google Scholar 

  • Tang, K., & Hailu, A. (2020). Smallholder farms’ adaptation to the impacts of climate change: Evidence from China’s Loess Plateau. Land Use Policy, 91, 104353.

    Article  Google Scholar 

  • Tang, K., & Ma, C. (2022). The cost-effectiveness of agricultural greenhouse gas reduction under diverse carbon policies in China. China Agricultural Economic Review. https://doi.org/10.1108/CAER-01-2022-0008

    Article  Google Scholar 

  • Tang, K., Hailu, A., Kragt, M. E., & Ma, C. (2016a). Marginal abatement costs of greenhouse gas emissions: Broadacre farming in the Great Southern Region of Western Australia. Australian Journal of Agricultural and Resource Economics, 60(3), 459-475.

    Google Scholar 

  • Tang, K., Kragt, M. E., Hailu, A., & Ma, C. (2016b). Carbon farming economics: What have we learned?. Journal of Environmental Management, 172, 49-57.

    Google Scholar 

  • Tang, K., Hailu, A., Kragt, M. E., & Ma, C. (2018). The response of broadacre mixed crop-livestock farmers to agricultural greenhouse gas abatement incentives. Agricultural Systems, 160, 11-20.

    Article  Google Scholar 

  • Tang, K., He, C., Ma, C., & Wang, D. (2019). Does carbon farming provide a cost‐effective option to mitigate GHG emissions? Evidence from China. Australian Journal of Agricultural and Resource Economics, 63(3), 575-592.

    Google Scholar 

  • Tang, K., Wang, M., & Zhou, D. (2021). Abatement potential and cost of agricultural greenhouse gases in Australian dryland farming system. Environmental Science and Pollution Research, 28(17), 21862-21873.

    Article  Google Scholar 

  • Thamo, T., Addai, D., Kragt, M. E., Kingwell, R. S., Pannell, D. J., & Robertson, M. J. (2019). Climate change reduces the mitigation obtainable from sequestration in an Australian farming system. Australian Journal of Agricultural and Resource Economics, 63(4), 841-865.

    Article  Google Scholar 

  • Thamo, T., Addai, D., Pannell, D. J., Robertson, M. J., Thomas, D. T., & Young, J. M. (2017). Climate change impacts and farm-level adaptation: Economic analysis of a mixed cropping-livestock system. Agricultural Systems, 150, 99-108.

    Article  Google Scholar 

  • Thamo, T., Kingwell, R. S., & Pannell, D. J. (2013). Measurement of greenhouse gas emissions from agriculture: Economic implications for policy and agricultural producers. Australian Journal of Agricultural and Resource Economics, 57(2), 234-252.

    Article  Google Scholar 

  • Thilakarathna, S. K., Hernandez‐Ramirez, G., Puurveen, D., Kryzanowski, L., Lohstraeter, G., Powers, L. A., Quan, N., & Tenuta, M. (2020). Nitrous oxide emissions and nitrogen use efficiency in wheat: Nitrogen fertilization timing and formulation, soil nitrogen, and weather effects. Soil Science Society of America Journal, 84(6), 1910-1927.

    Article  Google Scholar 

  • Tongwane, M. I., & Moeletsi, M. E. (2018). A review of greenhouse gas emissions from the agriculture sector in Africa. Agricultural Systems, 166, 124-134.

    Article  Google Scholar 

  • Tschakert, P. (2004). The costs of soil carbon sequestration: An economic analysis for small-scale farming systems in Senegal. Agricultural Systems, 81(3), 227-253.

    Article  Google Scholar 

  • Tubiello, F. N., Karl, K., Flammini, A., Gütschow, J., Conchedda, G., Pan, X., Qi, S.Y., Halldórudóttir Heiðarsdóttir, H., Wanner, N., Quadrelli, R., & Torero, M. (2022). Pre-and post-production processes increasingly dominate greenhouse gas emissions from agri-food systems. Earth System Science Data, 14(4), 1795-1809.

    Article  Google Scholar 

  • Turmel, M. S., Speratti, A., Baudron, F., Verhulst, N., & Govaerts, B. (2015). Crop residue management and soil health: A systems analysis. Agricultural Systems, 134, 6-16.

    Article  Google Scholar 

  • Turubanova, S., Potapov, P. V., Tyukavina, A., & Hansen, M. C. (2018). Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environmental Research Letters, 13(7), 074028.

    Article  Google Scholar 

  • VandenBygaart, A. J., McConkey, B. G., Angers, D. A., Smith, W., De Gooijer, H., Bentham, M., & Martin, T. (2008). Soil carbon change factors for the Canadian agriculture national greenhouse gas inventory. Canadian Journal of Soil Science, 88(5), 671-680.

    Article  Google Scholar 

  • Vanlauwe, B., Kihara, J., Chivenge, P., Pypers, P., Coe, R., & Six, J. (2011). Agronomic use efficiency of N fertilizer in maize-based systems in sub-Saharan Africa within the context of integrated soil fertility management. Plant and Soil, 339(1), 35-50.

    Article  Google Scholar 

  • Welsh, J., Powell, J., & Scott, F. (2015). Optimising nitrogen fertiliser in high yielding irrigated cotton: A benefit-cost analysis and the feasibility of participation in the ERF. Australian Farm Business Management Journal, 12, 62-80.

    Google Scholar 

  • Weng, Y., Cai, W., & Wang, C. (2021). Evaluating the use of BECCS and afforestation under China’s carbon-neutral target for 2060. Applied Energy, 299, 117263.

    Article  Google Scholar 

  • West, T. O., & Post, W. M. (2002). Soil organic carbon sequestration rates by tillage and crop rotation: A global data analysis. Soil Science Society of America Journal, 66(6), 1930-1946.

    Article  Google Scholar 

  • Whitbread, A., Blair, G., Konboon, Y., Lefroy, R., & Naklang, K. (2003). Managing crop residues, fertilizers and leaf litters to improve soil C, nutrient balances, and the grain yield of rice and wheat cropping systems in Thailand and Australia. Agriculture, Ecosystems & Environment, 100(2-3), 251-263.

    Article  Google Scholar 

  • Windisch, M. G., Humpenöder, F., Lejeune, Q., Schleussner, C. F., Lotze-Campen, H., & Popp, A. (2022). Accounting for local temperature effect substantially alters afforestation patterns. Environmental Research Letters, 17(2), 024030.

    Article  Google Scholar 

  • Wise, R., & Cacho, O. (2005). Tree-crop interactions and their environmental and economic implications in the presence of carbon-sequestration payments. Environmental Modelling & Software, 20(9), 1139-1148.

    Article  Google Scholar 

  • Wolf, S., Eugster, W., Potvin, C., Turner, B. L., & Buchmann, N. (2011). Carbon sequestration potential of tropical pasture compared with afforestation in Panama. Global Change Biology, 17(9), 2763-2780.

    Article  Google Scholar 

  • Wollenberg, E., Richards, M., Smith, P., Havlík, P., Obersteiner, M., Tubiello, F. N., Herold, M., Gerber, P., Carter, S., Reisinger, A., & Campbell, B. M. (2016). Reducing emissions from agriculture to meet the 2 ℃ target. Global Change Biology, 22(12), 3859-3864.

    Article  Google Scholar 

  • Xia, L., Wang, S., & Yan, X. (2014). Effects of long-term straw incorporation on the net global warming potential and the net economic benefit in a rice-wheat cropping system in China. Agriculture, Ecosystems & Environment, 197, 118-127.

    Article  Google Scholar 

  • Yadav, G. S., Lal, R., Meena, R. S., Babu, S., Das, A., Bhowmik, S. N., Datta, M., Layak, J., & Saha, P. (2019). Conservation tillage and nutrient management effects on productivity and soil carbon sequestration under double cropping of rice in north eastern region of India. Ecological Indicators, 105, 303-315.

    Article  Google Scholar 

  • Yang, X., Drury, C. F., & Wander, M. M. (2013). A wide view of no-tillage practices and soil organic carbon sequestration. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 63(6), 523-530.

    Google Scholar 

  • Yaron, G. (2001). Forest, plantation crops or small-scale agriculture? An economic analysis of alternative land use options in the Mount Cameroon area. Journal of Environmental Planning and Management, 44(1), 85-108.

    Article  Google Scholar 

  • Yin, C., Jones, K. L., Peterson, D. E., Garrett, K. A., Hulbert, S. H., & Paulitz, T. C. (2010). Members of soil bacterial communities sensitive to tillage and crop rotation. Soil Biology and Biochemistry, 42(12), 2111-2118.

    Article  Google Scholar 

  • Yosef, G., Walko, R., Avisar, R., Tatarinov, F., Rotenberg, E., & Yakir, D. (2018). Large-scale semi-arid afforestation can enhance precipitation and carbon sequestration potential. Scientific Reports, 8(1), 1-10.

    Article  Google Scholar 

  • Yu, J., Yao, S., & Zhang, B. (2014). Designing afforestation subsidies that account for the benefits of carbon sequestration: A case study using data from China's Loess Plateau. Journal of Forest Economics, 20(1), 65-76.

    Article  Google Scholar 

  • Yu, T., Mahe, L., Li, Y., Wei, X., Deng, X., & Zhang, D. (2022). Benefits of crop rotation on climate resilience and its prospects in China. Agronomy, 12(2), 436.

    Article  Google Scholar 

  • Yuan, F., Tang, K., & Shi, Q. (2021). Does Internet use reduce chemical fertilizer use? Evidence from rural households in China. Environmental Science and Pollution Research, 28(5), 6005-6017.

    Article  Google Scholar 

  • Yuan, F., Tang, K., Shi, Q., Qiu, W., & Wang, M. (2022). Rural women and chemical fertiliser use in rural China. Journal of Cleaner Production, 344, 130959.

    Google Scholar 

  • Zelek, C. A., & Shively, G. E. (2003). Measuring the opportunity cost of carbon sequestration in tropical agriculture. Land Economics, 79(3), 342-354.

    Article  Google Scholar 

  • Zhang, W. F., Dou, Z. X., He, P., Ju, X. T., Powlson, D., Chadwick, D., Norse, D., Lu, Y. L., Zhang, Y., Wu, L., & Zhang, F. S. (2013). New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proceedings of the National Academy of Sciences, 110(21), 8375-8380.

    Article  Google Scholar 

  • Zhang, X., Adamowski, J. F., Liu, C., Zhou, J., Zhu, G., Dong, X., Cao, J., & Feng, Q. (2020). Which slope aspect and gradient provides the best afforestation-driven soil carbon sequestration on the China's Loess Plateau?. Ecological Engineering, 147, 105782.

    Article  Google Scholar 

  • Zhao, Y., Wang, M., Hu, S., Zhang, X., Ouyang, Z., Zhang, G., Huang, B., Zhao, S., Wu, J., Xie, D., & Shi, X. (2018). Economics-and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proceedings of the National Academy of Sciences, 115(16), 4045-4050.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tang, K. (2023). Carbon Sequestration and Greenhouse Gas Emissions Reductions in Agriculture: Strategies and Their Economic Feasibility. In: Tang, K. (eds) Carbon-Neutral Pathways for China: Economic Issues. Springer, Singapore. https://doi.org/10.1007/978-981-19-5562-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5562-4_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5561-7

  • Online ISBN: 978-981-19-5562-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics