Skip to main content

Biotechnological Tools for Extraction, Identification, and Detection of Bioactive Compounds

  • Chapter
  • First Online:
Bioactive Components

Abstract

Plants are used as medicinal agents due to their wide range of structural diversity and pharmacological activities. The biologically active compounds that are present in plants are referred to as phytochemicals. These phytochemicals are derived from different parts of plants such as leaves, barks, seed, seed coat, flowers, roots, and pulps. The plants are the natural reservoirs of structurally diverse secondary metabolites. The extraction of bioactive compounds from the plants and their quantitative and qualitative estimation is important for the exploration of new biomolecules, which can be used in various industrial applications directly or can be used as a lead molecule to synthesize more potent compounds. This chapter highlights various methodologies used for the analysis of bioactive compounds present in the plant extracts involving the applications of chromatographic techniques such as high-performance liquid chromatography (HPLC), thin-layer chromatography (TLC), gas chromatography (GC), and high-performance thin-layer chromatography (HPTLC) and its detection through Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and mass spectrometry (MS). The chapter also covers the conventional techniques (Soxhlet method, cold maceration method, hydro-distillation method) for extraction of phytochemicals that generally require large amounts of organic solvents, are high energy expenditure, and are time-consuming. Hence, the new technologies of extraction viz. supercritical fluid extraction (SFC), pressurized liquid extraction (PLE), ultrasound-assisted extraction (UAE), and microwave-assisted extraction (MAE) that are referred to as clean or green technologies are also discussed here. These recent techniques used to extract bioactive compounds from natural sources can reduce or eliminate the use of toxic solvents and thus preserve the natural environment and its resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altemimi A, Lakhssassi N, Baharlouei A, Watson DG, Lightfoot DA (2017) Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 6(42):1–23. https://doi.org/10.3390/PLANTS6040042

    Article  Google Scholar 

  • Anokwuru CP, Anyasor GN, Ajibaye O, Fakoya O, Okebugwu P (2011) Effect of extraction solvents on phenolic, flavonoid, and antioxidant activities of three Nigerian medicinal plants. Nat Sci 9:53–61

    Google Scholar 

  • Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, Temml V, Wang L, Schwaiger S, Heiss EH, Rollinger JM, Schuster D, Breuss JM, Bochkov V, Mihovilovic MD, Kopp B, Bauer R, Dirsch VM, Stuppner H (2015) Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv 33(8):1582–1614. https://doi.org/10.1016/J.BIOTECHADV.2015.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azmir J, Zaidul ISM, Rahman MM, Sharif KM, Mohamed A, Sahena F, Jahurul MHA, Ghafoor K, Norulaini NAN, Omar AKM (2013) Techniques for extraction of bioactive compounds from plant materials: a review. J Food Eng 117(4):426–436. https://doi.org/10.1016/j.jfoodeng.2013.01.014

    Article  CAS  Google Scholar 

  • Ballard TS, Mallikarjunan P, Zhou K, O’Keefe S (2010) Microwave-assisted extraction of phenolic antioxidant compounds from peanut skins. Food Chem 120:1185–1192

    Article  CAS  Google Scholar 

  • Barba FJ, Zhu Z, Koubaa M, Sant’Ana AS, Orlien V (2016) Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: a review. Trends Food Sci Technol 49:96–109. https://doi.org/10.1016/J.TIFS.2016.01.006

    Article  CAS  Google Scholar 

  • Boussetta N, Vorobiev E (2014) Extraction of valuable biocompounds assisted by high voltage electrical discharges: a review. Comptes Rendus Chimie 17(3):197–203. https://doi.org/10.1016/J.CRCI.2013.11.011

    Article  CAS  Google Scholar 

  • Briones-Labarca V, Plaza-Morales M, Giovagnoli-Vicuña C, Jamett F (2015) High hydrostatic pressure and ultrasound extractions of antioxidant compounds, sulforaphane, and fatty acids from Chilean papaya (Vasconcellea pubescens) seeds: effects of extraction conditions and methods. LWT Food Sci Technol 60(1):525–534

    Article  CAS  Google Scholar 

  • Chauhan BS, Dahiya P (2016) Evaluation of In-vitro antimicrobial potential and phytochemical analysis of Spruce, Cajeput and Jamrosa essential oil against clinical isolates. Int J Green Pharm 10(1):27–32

    Google Scholar 

  • Chel A, Kaushik G (2018) Renewable energy technologies for sustainable development of energy efficient building. Alexandria Eng J 57(2):655–669. https://doi.org/10.1016/J.AEJ.2017.02.027

    Article  Google Scholar 

  • Chemat F, Rombaut N, Meullemiestre A, Turk M, Perino S, Fabiano-Tixier AS, Abert-Vian M (2017) Review of green food processing techniques. Preservation, transformation, and extraction. Innov Food Sci Emerg Technol 41:357–377

    Article  CAS  Google Scholar 

  • Christophoridou S, Dais P, Tseng LH, Spraul M (2005) Separation and identification of phenolic compounds in olive oil by coupling high-performance liquid chromatography with post-column solid-phase extraction to nuclear magnetic resonance spectroscopy. J Agric Food Chem 53:4667–4679

    Article  CAS  PubMed  Google Scholar 

  • Dahiya P, Manglik A (2013) Evaluation of the antibacterial, antifungal, and antioxidant potential of essential oil from Amyris balsamifera against multi-drug resistant clinical isolates. Asian J Pharmaceut Clin Res 6(5):57–60

    Google Scholar 

  • Dahiya P, Purkayastha S (2012a) Phytochemical screening and antimicrobial activity of some medicinal plants against multi-drug resistant bacteria from clinical isolates. Indian J Pharm Sci 74(5):443–450

    Article  PubMed  PubMed Central  Google Scholar 

  • Dahiya P, Purkayastha S (2012b) Phytochemical screening and antibacterial potentiality of essential oil from Psoralea corylifolia Linn. Int J Biosci Biochem Bioinformatics 2(3):188–191

    Google Scholar 

  • Delazar A, Nahar L, Hamedeyazdan S, Sarker SD (2012) Microwave-assisted extraction in natural products isolation. Methods Mol Biol 864:89–115

    Article  CAS  PubMed  Google Scholar 

  • Devgun M, Nanda A, Ansari SH, Swamy SK (2010) Recent techniques for extraction of natural products. Res J Pharma Tech 3(3):644–649

    CAS  Google Scholar 

  • Dewanjee S, Gangopadhyay M, Bhattacharya N, Khanra R, Dua TK (2015) Bioautography and its scope in the field of natural product chemistry. J Pharmaceut Anal 5(2):75–84

    Google Scholar 

  • Ekor M (2013) The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol 4:177. https://doi.org/10.3389/FPHAR.2013.00177

    Article  Google Scholar 

  • Garcia-Castello EM, Rodriguez-Lopez AD, Mayor L, Ballesteros R, Conidi C, Cassano A (2015) Optimization of conventional and ultrasound-assisted extraction of flavonoids from grapefruit (Citrus paradisi L.) solid wastes. LWT Food Sci Technol 64(2):1114–1122

    Article  CAS  Google Scholar 

  • Garud AM, Jadhav VM, Kadam VJ (2017) Chromatographic analysis of phytopharmaceuticals - a review. Int J Pharm Sci Rev Res 44(1):174–178

    CAS  Google Scholar 

  • Gupta MM, Shanker K (2008) Process-scale high-performance liquid chromatography for medicinal and aromatic plants. In: Khanda SS, Khanuja SP, Longo G, Rakesh DD (eds) Extraction technologies for medicinal and aromatic plants. International Center for Science and High Technology, Trieste

    Google Scholar 

  • Heftmann F (1992) Chromatography: fundamentals and application of chromatographic and electrophoretic techniques, 5th edn. Elsevier, Amsterdam

    Google Scholar 

  • Ingle KP, Deshmukh AG, Padole DA, Dudhare MS, Moharil MP, Khelurkal VC (2017) Phytochemicals: extraction methods, identification, detection of bioactive compounds from plant extracts. J Pharmacogn Phytochem 6(1):32–36

    CAS  Google Scholar 

  • Jayasinghe L, Kumarihamy BMM, Jayarathna KHRN et al (2003) Antifungal constituents of the stem bark of Bridelia retusa. J Phytochem 62:637–647

    Article  CAS  Google Scholar 

  • Kek SP, Chin NL, Yusof YA (2013) Direct and indirect power Ultrasound-assisted pre-osmotic treatments in convective drying of guava slices. Food Bioprod Process 91(4):495–506

    Article  Google Scholar 

  • Kemp W (1991) Energy and the electromagnetic spectrum. In: Organic spectroscopy. Macmillan Press, London, pp 1–7

    Chapter  Google Scholar 

  • Kumar S, Jyothirmayee K, Sarangi M (2013) Thin-layer chromatography: a tool of biotechnology for isolation of bioactive compounds from medicinal plants. Int J Pharmaceut Sci Rev Res 18(1):126–132

    Google Scholar 

  • Manhas N, Dahiya P (2017) In vitro antimicrobial activity and phytochemical screening of leaf and stem extracts of Michelia champaca Linn. Int Food Res J 24(6):2672–2676

    CAS  Google Scholar 

  • McNaught AD, Wilkinson A (eds) (2006) Compendium of chemical terminology - the gold book. Blackwell Scientific Publications, Oxford. IUPAC (International Union of Pure and Applied Chemistry). http://goldbook.iupac.org

    Google Scholar 

  • Mustafa A, Turner C (2011) Pressurized liquid extraction as a green approach in food and herbal plants extraction: a review. Anal Chim Acta 703(1):8–18. https://doi.org/10.1016/J.ACA.2011.07.018

    Article  CAS  PubMed  Google Scholar 

  • Oroian M, Escriche I (2015) Antioxidants: characterization, natural sources, extraction, and analysis. Food Res Int 74:10–36

    Article  CAS  PubMed  Google Scholar 

  • Pandey A, Tripathi S (2014) Concept of standardization, extraction, and pre-phytochemical screening strategies for the herbal drugs. J Pharmacogn Phytochem 2(5):115–119

    Google Scholar 

  • Parikh JK, Desai MA (2011) Hydro-distillation of essential oil from Cymbopogon flexuosus. Int J Food Eng 7(1):1–11

    Article  Google Scholar 

  • Pouliot Y, Conway V, Leclerc PL (2014) Separation and concentration technologies in food processing. In: Food processing: principles and applications, 2nd edn. Wiley, New York, NY, pp 33–60. https://doi.org/10.1002/9781118846315.ch3

    Chapter  Google Scholar 

  • Pronyk C, Mazza G (2009) Design and scale-up of pressurized fluid extractors for food and bioproducts. J Food Eng 95(2):215–226

    Article  CAS  Google Scholar 

  • Purkayastha S, Narain R, Dahiya P (2012) Evaluation of antimicrobial and phytochemical screening of Fennel, Juniper and Kalonji essential oils against multi-drug resistant clinical isolates. Asian Pac J Trop Biomed 2(3):S1625–S1629

    Article  Google Scholar 

  • Rajha HN, Boussetta N, Louka N, Maroun RG, Vorobiev E (2015) Effect of alternative physical pre-treatments (pulsed electric field, high voltage electrical discharges, and ultrasound) on the dead-end ultrafiltration of vine-shoot extracts. Sep Purif Technol 146:243–251

    Article  CAS  Google Scholar 

  • Ramirez A, Gutiérrez R, Diaz G et al (2003) High-performance thin-layer chromatography-bioautography for multiple antibiotic residues in cow’s milk. J Chromatogr B Anal Technol Biomed Life Sci 784(2003):315–322

    Article  CAS  Google Scholar 

  • Rasul MG (2018) Conventional extraction methods use in medicinal plants, their advantages, and disadvantages. Int J Basic Sci Appl Comput 2(6):10–14

    Google Scholar 

  • Revathy S, Elumalai S, Benny M, Antony B (2011) Isolation purification and identification of curcuminoids from turmeric (Curcuma longa) by column chromatography. J Exp Sci 2(7):21–25

    CAS  Google Scholar 

  • Roselló-Soto E, Koubaa M, Moubarik A, Lopes RP, Saraiva JA, Boussetta N et al (2015) Emerging opportunities for the effective valorization of wastes and by-products generated during the olive oil production process: non-conventional methods for the recovery of high-added value compounds. Trends Food Sci Technol 45(2):296–310

    Article  Google Scholar 

  • Salehi B, Machin L, Monzote L, Sharifi-Rad J, Ezzat SM, Salem MA, Merghany RM, El Mahdy NM, Klllç CS, Sytar O, Sharifi-Rad M, Sharopov F, Martins N, Martorell M, Cho WC (2020) Therapeutic potential of quercetin: new insights and perspectives for human health. ACS Omega 5(20):11849–11872. https://doi.org/10.1021/ACSOMEGA.0C01818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos DT, Veggi PC, Meireles MAA (2012) Optimization and economic evaluation of pressurized liquid extraction of phenolic compounds from Jabuticaba skins. J Food Eng 108(3):444–452

    Article  CAS  Google Scholar 

  • Sasidharan S, Chen Y, Saravanan D, Sundram KM, Yoga Latha L (2011) Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr J Tradit Complem Altern Med 8(1):1–10

    CAS  Google Scholar 

  • Saxena G, Farmer S, Towers GHN, Hancock REW (1995) Use of specific dyes in the detection of antimicrobial compounds from crude plant extracts using a thin layer chromatography agar overlay technique. Phytochem Anal 6(3):125–129

    Article  CAS  Google Scholar 

  • Sherman J (2008) Planar chromatography. Anal Chem 80:4253–4267

    Article  Google Scholar 

  • Silva RPFF, Rocha-Santos TAP, Duarte AC (2016) Supercritical fluid extraction of bioactive compounds. TrAC Trends Anal Chem 76:40–51

    Article  Google Scholar 

  • Singhal S, Singhal N, Agarwal S (2009) Thin layer chromatography. In: Kasture AV, Mahadik KR, Wadodkar SG, More HN (eds) Pharmaceutical analysis – instrumental methods, vol II, 1st edn. Nirali Prakashan, Pune, p 270

    Google Scholar 

  • Sivakumar V, Sadiq AM, Danarajan MS, Jayanthi M (2014) HPLC method for quantification of berberine in wild and micro propagated Tinospora cordifolia – an important ayurvedic medicinal plant. Int J Pharm Res Sch 3(2):432–439

    CAS  Google Scholar 

  • Sofowora A, Ogunbodede E, Onayade A (2013) The role and place of medicinal plants in the strategies for disease prevention. Afr J Tradit Complement Altern Med 10(5):210. https://doi.org/10.4314/AJTCAM.V10I5.2

    Article  PubMed  PubMed Central  Google Scholar 

  • Soquetta MB, Terra LDM, Bastos CP (2018) Green technologies for the extraction of bioactive compounds in fruits and vegetables. CyTA J Food 16(1):400–412. https://doi.org/10.1080/19476337.2017.1411978

    Article  CAS  Google Scholar 

  • Sricharoen P, Limchoowong N, Techawongstien S, Chanthai S (2016) A novel extraction method for β-carotene and other carotenoids in fruit juices using air-assisted, low-density solvent-based liquid–liquid microextraction and solidified floating organic droplets. Food Chem 203:386–393. https://doi.org/10.1016/J.FOODCHEM.2016.02.093

    Article  CAS  PubMed  Google Scholar 

  • Suzara S, Costa DA, Gariepyb Y, Rochaa SCS, Raghavanb V (2013) Spilanthol extraction using a microwave: calibration curve for gas chromatography. Chem Eng Trans 32:1783–1788

    Google Scholar 

  • Tan BL, Norhaizan ME, Liew WPP, Rahman HS (2018) Antioxidant and oxidative stress: a mutual interplay in age-related diseases. Front Pharmacol 9:1162. https://doi.org/10.3389/FPHAR.2018.01162

    Article  PubMed  PubMed Central  Google Scholar 

  • Tiwari BK (2015) Ultrasound: a clean, green extraction technology. TrAC Trends Anal Chem 71:100–109

    Article  CAS  Google Scholar 

  • Wagman GH, Bailey JV (1969) Use of silicic acid–glass fiber sheets for bioautography of antimicrobial substances. J Chromatogr 41:263–264

    Article  CAS  Google Scholar 

  • Yuan H, Ma Q, Ye L, Piao G (2016) The traditional medicine and modern medicine from natural products. Molecules 21(5):559. https://doi.org/10.3390/MOLECULES21050559

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaidi S, Dahiya P (2015) In vitro antimicrobial activity, phytochemical analysis and total phenolic content of essential oil from Mentha spicata and Mentha piperita. Int Food Res J 22(6):2440–2445

    CAS  Google Scholar 

  • Zhang XN (2014) Comparative studies on the chemical components and pharmacological effects of Lonicera macranthoides Hand-Mazz. and Lonicera japonica Thunb. Master’s thesis, Southwest University

    Google Scholar 

  • Zhang YJ, Gan RY, Li S, Zhou Y, Li AN, Xu DP, Bin LH, Kitts DD (2015) Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules 20(12):21138. https://doi.org/10.3390/MOLECULES201219753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang QW, Lin LG, Ye WC (2018) Techniques for extraction and isolation of natural products: a complete comprehensive review. Chin Med 13(20):1–12. https://doi.org/10.1186/s13020-018-0177-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumedha Mohan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Varshney, A., Dahiya, P., Mohan, S. (2023). Biotechnological Tools for Extraction, Identification, and Detection of Bioactive Compounds. In: Thakur, M., Belwal, T. (eds) Bioactive Components . Springer, Singapore. https://doi.org/10.1007/978-981-19-2366-1_23

Download citation

Publish with us

Policies and ethics