Skip to main content

Using Earth Observations and GLDAS Model to Monitor Water Budgets for River Basin Management

  • Conference paper
  • First Online:
Advanced Modelling and Innovations in Water Resources Engineering

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 176))

Abstract

Using the hydrologic decision support system water quality monitoring is also the most significant approach for sustainable hydrological cycle of any catchment region. Even with the uncertainties, earth observation remote sensing (RS) and Global Land Data Assimilation System (GLDAS) data employed to assess inter-annual and seasonal variability in individual water mechanisms and to get signs of decrease/increase in water availability for relatively large river basins. Evaluation of empirical methodology or local knowledge with the RS and GLDAS data may help in assessing the usefulness of best agricultural practice management system in the watershed. RS can contribute to understanding, predicting, and monitoring the water balance of large, poorly instrumented basins. There is power in merging data streams, through both multi-sensor algorithm and data assimilation system. Uncertainties are substantial and should not be understated. Collaborative analysis can, sometimes, overcome skepticism of remotely sensed products. Our research focuses on amounts of precipitation, evapotranspiration, storm surface runoff and change in terrestrial storage in the river basin for dry and wet seasons were calculated from remote sensing-based GPM IMERG, MODIS, and GRACE/GRACE-FO-derived GLDAS-CLSM model during the wet and dry seasons on 2004–2005, 2009–2010, 2014–2015, and 2018–2019 in Mahanadi river basin, India. More accurate, quantitative estimation of water budget continues to be a challenge for a variety of reasons such as climate change, land cover dynamics, anthropogenic water diversions, etc. The spread of estimates can be used for assessing the uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mirza MMQ (2011) Climate change, flooding in South Asia and implications. Region Environ Change 11:95–107. https://doi.org/10.1007/s10113-010-0184-7

    Article  Google Scholar 

  2. Hoang LP, Vliet MTH, Kummu M, Lauri H, Koponen J, Supit I et al (2019) The Mekong’s future flows under multiple drivers: how climate change, hydropower developments and irrigation expansions drive hydrological changes. Sci Tot Environ 649:601–609. https://doi.org/10.1016/j.scitotenv.2018.08.160

    Article  CAS  Google Scholar 

  3. Khandu FE, Schumacher M, Awange JL, Schmied HM (2016) Exploring the influence of precipitation extremes and human water use on total water storage (TWS) changes in the Ganges-Brahmaputra-Meghna river basin. Water Resour Res 52:2240–2258. https://doi.org/10.1002/2015WR018113

    Article  Google Scholar 

  4. UNEP (2016) Transboundary River Basins Status and Trends SUMMARY FOR POLICY MAKERS. United Nations Environment Programme (UNEP). http://www.geftwap.org/publications/river-basins-spm. Accessed on 17 June 2020

  5. Food and Agriculture Organization (FAO) (2012) Irrigation in Southern and Eastern Asia in Figures. FAO, Land and water division, Water Reports. 37

    Google Scholar 

  6. Murshed SB, Kaluarachchi JJ (2018) Scarcity of fresh water resources in the Ganges Delta of Bangladesh. Water Secur 4–5:8–18. https://doi.org/10.1016/j.wasec.2018.11.002

    Article  Google Scholar 

  7. Mao Y, Wang KC, Liu XM, Liu CM (2016) Water storage in reservoirs built from 1997 to 2014 significantly altered the calculated evapotranspiration trends over China. J Geophys Res Atmos 121:10097–10112

    Google Scholar 

  8. Xue BL, Wang L, Li XP, Yang K, Chen DL, Sun LT (2013) Evaluation of evapotranspiration estimates for two river basins on the Tibetan Plateau by a water balance method. J Hydrol 492:290–297

    Article  Google Scholar 

  9. Lakshmi V, Fayne J, Bolten J (2018) A comparative study of available water in the major river basins of the world. J Hydrol 567:510–532. https://doi.org/10.1016/j.jhydrol.2018.10.038

    Article  Google Scholar 

  10. Hanington P, To QT, Van PDT, Doan NAV, Kiem AS (2017) A hydrological model for interprovincial water resource planning and management: a case study in the Long Xuyen Quadrangle, Mekong Delta. Vietnam J Hydrol 547:1–9. https://doi.org/10.1016/j.jhydrol.2017.01.030

    Article  Google Scholar 

  11. Syed TH, Famiglietti JS, Rodell M, Chen J, Wilson CR (2008) Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resour Res 44:W02433. https://doi.org/10.1029/2006WR005779

    Article  Google Scholar 

  12. Hassan A, Jin S (2016) Water storage changes and balances in Africa observed by GRACE and hydrological models. Geod. Geodyna 7–1:39–49. https://doi.org/10.1016/j.geog.2016.03.002

  13. Gonzalez R, Ouarda T, Marpu P, Allam M, Eltahir E, Pearson S (2016) Water Budget Analysis in Arid Regions, Application to the United Arab Emirates. Water 8(9):415. https://doi.org/10.3390/w8090415

    Article  Google Scholar 

  14. Eltahir EAB, Bras RL (1996) Precipitation recycling. Rev Geophys 34(3):367–378

    Article  Google Scholar 

  15. Richey JE, Melack JM, Aufdenkampe AK, Ballester VM, Hess LL (2002) Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416:617–620

    Article  CAS  Google Scholar 

  16. Panday PK, Coe MT, Macedo MN, Lefebvre P, Castanho ADDA (2015) Deforestation offsets water balance changes due to climate variability in the Xingu River in eastern Amazonia. J Hydrol 523:822–829. http://dx.doi.org/https://doi.org/10.1016/j.jhydrol.2015.02.018

  17. Long D, Yang Y, Wada Y, Hong Y, Liang W, Chen Y, Yong B, Hou A, Wei J, Chen L (2015) Deriving scaling factors using a global hydrological model to restore GRACE total water storage changes for China’s Yangtze River Basin. Remote Sens Environ 168:177–193. https://doi.org/10.1016/j.rse.2015.07.003

  18. Penatti NC, Almeida TIRD, Ferreira LG, Arantes AE, Coe MT. Satellite based hydrological dynamics of the world’s largest continuous wetland. Remote Sens. Environ. 2015, 170: 1–13. https://doi.org/10.1016/j.rse.2015.08.031

  19. Lv M, Ma Z, Yuan X, Lv M, Li M, Zheng Z (2017) Water budget closure based on GRACE measurements and reconstructed evapotranspiration using GLDAS and water use data for two large densely-populated mid-latitude basins. J Hydrol 547:585–599. https://doi.org/10.1016/j.jhydrol.2017.02.027

    Article  Google Scholar 

  20. Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460:999–1002. https://doi.org/10.1038/nature08238

    Article  CAS  Google Scholar 

  21. Chinnasamy P, Maheshwari B, Prathapar S (2015) Understanding groundwater storage changes and recharge in Rajasthan, India through remote sensing. Water 7:5547–5565. https://doi.org/10.3390/w7105547

  22. Singh A, Seitz F, Eicker A, Güntner A (2016) Water budget analysis within the surrounding of prominent lakes and reservoirs from multi-sensor earth observation data and hydrological models: case studies of the Aral Sea and Lake Mead. Remote Sens 8(11):953

    Article  Google Scholar 

  23. Wan Z, Zhang K, Xue X, Hong Z, Hong Y, Gourley JJ Water balance based actual evapotranspiration reconstruction from ground and satellite observations over the conterminous United States. Water Resour Res 51:6485–6499. https://doi.org/10.1002/2015wr017311

  24. Landerer FW, Swenson SC (2012) Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour Res 48:W04531. https://doi.org/10.1029/2011wr011453

    Article  Google Scholar 

  25. Long D, Longuevergne L, Scanlon BR (2014) Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites. Water Resour Res 50:1131–1151. https://doi.org/10.1002/2013wr014581

    Article  Google Scholar 

  26. Swain KC, Singha C, Nayak L (2020) Flood susceptibility mapping through the GIS-AHP technique using the cloud. Int J Geo-Inf 9:720. https://doi.org/10.3390/ijgi9120720

  27. Haddeland I, Lettenmaier DP, Skaugen T (2006) Effects of irrigation on the water and energy balances of the Colorado and Mekong river basins. J Hydrol 324:210–223. https://doi.org/10.1016/j.jhydrol.2005.09.028

    Article  Google Scholar 

  28. Siebert S, Burke J, Faures JM, Frenken K, Hoogeveen J, Döll P, Portmann FT (2010) Groundwater use for irrigation–a global inventory. Hydrol Earth Syst Sci 14(10):1863–1880. https://doi.org/10.5194/hess-14-1863-2010

  29. Wada Y, van Beek LPH, Bierkens MFP (2012) Nonsustainable groundwater sustaining irrigation: a global assessment. Water Resour Res 48:W00L06. https://doi.org/10.1029/2011WR010562

  30. Landerer F (2020) CSR TELLUS GRACE Level-3 Monthly Ocean Bottom Pressure Anomaly Release 6.0 VERSION 03 in netCDF/ASCII/GeoTIFF Formats. Ver. RL06 v03. PO.DAAC, CA, USA. 2020. Accessed on 01 June 2020. https://doi.org/10.5067/TEOCN-3AC63

  31. Singha C, Swain KC, Swain SK (2020) Best crop rotation selection with GIS-AHP technique using soil nutrient variability. Agriculture 10:213. https://doi.org/10.3390/agriculture10060213

  32. Winsemius HC, Savenije HHG, vandeGiesen NC, vandenHurk BJJM, Zapreeva EA, Klees R (2006) Assessment of gravity recovery and climate experiment (GRACE) temporal signature over upper Zambezi. Water Resour Res 42:W12201. https://doi.org/10.1029/2006WR005192

  33. Niu GY, Yang ZL (2006) Assessing a land surface model’s improvements with GRACE estimates. Geophys Res Lett 33:L07401. https://doi.org/10.1029/2005GL025555

    Article  Google Scholar 

  34. Swenson SC, Milly PCD (2006) Climate model biases in seasonality of continental water storage revealed by satellite gravimetry. Water Resour Res 42:W03201. https://doi.org/10.1029/2005WR004628

    Article  Google Scholar 

  35. Wang G, Pan J, Shen C, Li S, Lu J, Lou D, Hagan DFT (1884) Evaluation of Evapotranspiration Estimates in the Yellow River Basin against the Water Balance Method. Water 2018:10

    Google Scholar 

  36. Syed TH, Famiglietti JS, Chen J, Rodell M, Seneviratne SI, Viterbo P, Wilson CR (2005) Total basin discharge for the Amazon and Mississippi River basins from GRACE and a land-atmosphere water balance. Geophys Res Lett 32:L24404. https://doi.org/10.1029/2005gl024851

    Article  Google Scholar 

  37. Sahoo AK, Pan M, Troy TJ, Vinukollu RK, Sheffield J, Wood EF (2011) Reconciling the global terrestrial water budget using satellite remote sensing. Remote Sens Environ 115(8):1850–1865

    Article  Google Scholar 

  38. Pan M, Sahoo AK, Troy TJ, Vinukollu RK, Sheffield J, Wood EF (2011) Multisource estimation of long-term terrestrial water budget for major global river basins. J Clim 25(9):3191–3206

    Article  Google Scholar 

  39. Li B, Beaudoing H, Rodell M (2020) NASA/GSFC/HSL GLDAS Catchment Land Surface Model L4 daily 0.25 × 0.25 degree GRACE-DA1 V2.2, Greenbelt, Maryland, USA, Goddard Earth Sciences Data and Information Services Centre (GES DISC) 2020. Accessed on 15 June 2020. https://doi.org/10.5067/TXBMLX370XX8

  40. Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng CJ, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D, Toll D (2004) The Global land data assimilation system. Bullet Ame Meteoro Soc 85(3):381–394

    Google Scholar 

  41. Zaitchik BF, Rodell M, Olivera F (2010) evaluation of the global land data assimilation system using global river discharge data and a source to sink routing scheme. Water Resource Res 46:W06507. https://doi.org/10.1029/2009WR007811

    Article  Google Scholar 

  42. Pennemann PCS, Rivera JAR, Saulo ACE, Penalba OCP (2016) A comparison of GLDAS soil moisture anomalies against standardized precipitation index and multisatellite estimations over South America. J. Hydrome 16. https://doi.org/10.1175/JHM-D-13-0190.1

  43. Sikder MS, David CH, Allen GH, Qiao X, Nelson EJ, Matin MA (2019) Evaluation of available global runoff datasets through a river model in support of transboundary water management in South and Southeast Asia. Front Environ Sci 7:171. https://doi.org/10.3389/fenvs.2019.00171

    Article  Google Scholar 

  44. Chen Y, Yang K, Qin J, Zhao L, Tang W, Han M (2013) Evaluation of AMSR-E retrievals and GLDAS simulations against observations of a soil moisture network on the Central Tibetan Plateau. J Geophys Res 118:4466–4475. https://doi.org/10.1002/jgrd.50301

    Article  Google Scholar 

  45. Bi H, Ma J, Zheng W, Zeng J (2016) Comparison of soil moisture in GLDAS model simulations and in situ observations over the Tibetan Plateau. J Geophys Res 121:2658–2678. https://doi.org/10.1002/2015JD024131

  46. Berg AA, Famiglietti JS, Rodell M, Reichle RH, Jambor U, Holl SL et al (2005) Development of a hydrometeorological forcing data set for global soil moisture estimation. Int J Climatol 25:1697–1714. https://doi.org/10.1002/joc.1203

    Article  Google Scholar 

  47. GOI (Government of India Ministry of Water Resources), Mahanadi Basin 2014, pp.1–100. www.india-wris.nrsc.gov.in. Accessed on 20 July 2020

  48. Lehner B, Verdin K, Jarvis A (2008) New global hydrography derived from spaceborne elevation data. Eos Trans Am Geophys Union 89:93–104. https://doi.org/10.1029/2008EO100001

    Article  Google Scholar 

  49. Snow AD (2015) A new global forecasting model to produce high-resolution stream forecasts [Master’s thesis]. Brigham Young University, Provo, UT, United States

    Google Scholar 

  50. Beaudoing H, Rodell M (2020) NASA/GSFC/HSL, GLDAS Noah Land surface Model L4 3 hourly 0.25 × 0.25 degree V2.1, Greenbelt, Maryland, USA, Goddard Earth Sciences Data and Information Services Centre (GES DISC), 2020. Accessed on 14 June 2020. https://doi.org/10.5067/E7TYRXPJKWOQ

  51. Negrón Juárez RI, Li W, Fu R, Fernandes K, de Oliveira Cardoso A (2009) Comparison of precipitation datasets over the Tropical South American and African continents. J Hydrometeorol 10:289–299

    Google Scholar 

  52. Shin DB, Kim JH, Park HJ (2011) Agreement between monthly precipitation estimates from TRMM satellite, NCEP reanalysis, and merged gauge-satellite analysis. J Geophys Res Atmospheres 116

    Google Scholar 

  53. Schumacher M, Eicker A, Kusche J, Schmied HM, Döll P (2015) Covariance analysis and sensitivity studies for GRACE assimilation into WGHM. In: Rizos C (ed) International association of geodesy symposia. Springer, Berlin/Heidelberg, Germany, pp 1–7

    Google Scholar 

  54. Lettenmaier DP, Famiglietti JS (2006) Water from on high. Nature 444:562–563

    Article  CAS  Google Scholar 

  55. Dzikiti et al (2019) Comparison of two remote sensing models for estimating evapotranspiration: algorithm evaluation and application in seasonally arid ecosystems in South Africa2019: Comparison. J Aritf Land 11:495–512. https://doi.org/10.1007/s40333-019-0098-2

  56. Souza et al (2019) Evaluation of MOD16 algorithm over irrigated rice paddy using flux tower measurements in Southern Brazil. Water 11. https://doi.org/10.3390/w11091911

Download references

Acknowledgements

The authors do hereby acknowledged the contribution Visva-Bharati (A Central University), West Bengal, India, for facilitating this research work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singha, C., Swain, K.C. (2022). Using Earth Observations and GLDAS Model to Monitor Water Budgets for River Basin Management. In: Rao, C.M., Patra, K.C., Jhajharia, D., Kumari, S. (eds) Advanced Modelling and Innovations in Water Resources Engineering. Lecture Notes in Civil Engineering, vol 176. Springer, Singapore. https://doi.org/10.1007/978-981-16-4629-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4629-4_34

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4628-7

  • Online ISBN: 978-981-16-4629-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics