Skip to main content

Switched Mode Fourth-Order Buck–Boost Converter Using Type II and Type III Controllers in DC Grid Applications

  • Chapter
  • First Online:
DC—DC Converters for Future Renewable Energy Systems

Part of the book series: Energy Systems in Electrical Engineering ((ESIEE))

  • 1596 Accesses

Abstract

There are several DC–DC converters which are applied in many industrial applications such as power supplies and power grids. The application discussed here is about solar energy conversion. The input to the buck–boost converter is a solar panel with photovoltaic cells. In such cases, the control of power converters become difficult for varying input voltage and output load currents. The fourth-order buck–boost converter discussed here greatly reduces the source current ripple which is caused due to the pulsation in the source current. As a result, oscillations in the circuit are also greatly reduced which extends the battery life of a system wherever it is used. Here we have discussed a control topology using Type II controller followed by Type III controller for a comparatively better performance based on the settling time, rise time and transient response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Veerachary, M., Khubchandani, V.: Control of fourth-order buck-boost converter. In: 2019 IEEE Transportation Electrification Conference (ITEC-India), Bengaluru, India, pp. 1–6 (2019). https://doi.org/10.1109/ITEC-India48457.2019.ITECINDIA2019-139

  2. Veerachary, M., Saxena, A.R.: Design of robust digital stabilizing controller for fourth-order boost DC-DC converter: a quantitative feedback theory approach. IEEE Trans. Industr. Electron. 59(2), 952–963 (2012). https://doi.org/10.1109/TIE.2011.2158040

    Article  Google Scholar 

  3. Clerk Maxwell, J.: A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford, Clarendon, pp. 68–73 (1892)

    Google Scholar 

  4. Sudhakar Babu, C., Veerachary, M.: Predictive valley current control for two inductor boost converter. In: Proceedings of the IEEE International Symposium on Industrial Electronics, 2005. ISIE 2005, Dubrovnik, Croatia, vol. 2, pp. 727–731 (2005). https://doi.org/10.1109/ISIE.2005.1529005

  5. Priyadarshi, N., Padmanaban, S., Maroti, P.K., Sharma. A.: An extensive practical investigation of FPSO-based MPPT for grid integrated PV system under variable operating conditions with anti-islanding protection. IEEE Syst. J. 1–11 (2018)

    Google Scholar 

  6. Priyadarshi, N., Padmanaban, S., Bhaskar, M.S., Blaabjerg, F., Sharma, A.: A fuzzy SVPWM based inverter control realization of grid integrated PV-wind system with FPSO MPPT algorithm for a grid-connected PV/wind power generation system: hardware implementation. IET Electric Power Appl. pp. 1–12 (2018)

    Google Scholar 

  7. Ghosh, A., Banerjee, S., Sarkar, M.K., Dutta, P.: Design and implementation of type-II and type-III controller for DC-DC switched-mode boost converter by using K-factor approach and optimisation techniques. In: IET Power Electronics, vol. 9, no. 5, pp. 938–950 (2016). https://doi.org/10.1049/iet-pel.2015.0144

  8. Saxena, R., Veerachary, M.: Non-linear sampled-data model for fourth order boost DC-DC converter. In: INTELEC 2009—31st International Telecommunications Energy Conference, Incheon, pp. 1–6 (2009). https://doi.org/10.1109/INTLEC.2009.5351832

  9. Veerachary, M., Saxena, A.R.: Optimized power stage design of low source current ripple fourth-order boost DC–DC converter: a PSO approach. IEEE Trans. Industr. Electron. 62(3), 1491–1502 (2015). https://doi.org/10.1109/TIE.2014.2361316

    Article  Google Scholar 

  10. Padmanaban, S., Priyadarshi, N., Holm-Nielsen, J.B., Bhaskar, M.S., Azam, F., Sharma, A.K.: A novel modified sine-cosine optimized MPPT algorithm for grid integrated PV system under real operating conditions. IEEE Access 7, 10467–10477 (2019). https://doi.org/10.1109/ACCESS.2018.2890533

    Article  Google Scholar 

  11. Padmanaban, S., Priyadarshi, N., Holm-Nielsen, J.B., Bhaskar, M.S., Hossain, E., Azam, F.: A hybrid photovoltaic-fuel cell for grid integration with Jaya-based maximum power point tracking: experimental performance evaluation. IEEE Access 7, 82978–82990 (2019). https://doi.org/10.1109/ACCESS.2019.2924264

    Article  Google Scholar 

  12. Ghosh, A., Banerjee, S.: Design of type-III controller for DC-DC switch-mode boost converter. In: 2014 6th IEEE Power India International Conference (PIICON), Delhi, pp. 1–6 (2014) https://doi.org/10.1109/POWERI.2014.7117679

  13. Ghosh, A., Banerjee, S.: Control of switched-mode boost converter by using classical and optimized type controllers. J. Control Eng. Appl. Inf. 17(4), 114–125, Romanian Society of Control Engineering (2015)

    Google Scholar 

  14. Ghosh, A., Banerjee, S.: Design and implementation of Type-II compensator in DC-DC switch-mode step-up power supply. In: Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT), Hooghly, pp. 1–5 (2015). https://doi.org/10.1109/C3IT.2015.7060164

  15. Sarkar, S., Ghosh, A. Banerjee, S.: Design and implementation of type-III controller in tri state boost converter. In: 2015 Annual IEEE India Conference (INDICON), New Delhi, pp. 1–6 (2015). https://doi.org/10.1109/INDICON.2015.7443152

  16. Chatterjee, K., Ghosh, A., Saha, P.K., Das, A.: An analysis of power-factor-correction boost converter’s nonlinear dynamics through bifurcation diagrams. In: 2016 International Conference on Intelligent Control Power and Instrumentation (ICICPI), Kolkata, pp. 142–147 (2016). https://doi.org/10.1109/ICICPI.2016.7859691

  17. Banerjee, S., Ghosh, A., Rana, N.: Design and fabrication of closed loop two-phase interleaved boost converter with Type-III controller. IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, pp. 3331–3336 (2016). https://doi.org/10.1109/IECON.2016.7793377

  18. Ghosh, A., Banerjee, S.: A comparison between classical and advanced controllers for a boost converter. In: 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Chennai, India, pp. 1–6 (2018). https://doi.org/10.1109/PEDES.2018.8707911

  19. Rana, N., Ghosh, A., Banerjee, S.: Development of an improved Tristate buck-boost converter with optimized type-3 controller. IEEE J. Emerg. Sel. Topics Power Electron. 6(1), 400–415 (2018). https://doi.org/10.1109/JESTPE.2017.2724847

    Article  Google Scholar 

  20. Erickson, R.W., Maksimovic, D.: Fundamentals of power electronics. Springer (2007)

    Google Scholar 

  21. Ogata, K.: Modern control engineering. Pearson Education, India (2010)

    MATH  Google Scholar 

  22. Vardia, M., Priyadarshi, N., Ali, I., Azam, F., Bhoi, A.K.: Maximum power point tracking for wind energy conversion system. In: Bhoi, A., Sherpa, K., Kalam, A., Chae, G.S. (eds) Advances in Greener Energy Technologies. Green Energy and Technology. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-4246-6_36

  23. Choudhary, T., Priyadarshi, N., Kumar, P., Azam, F., Bhoi, A.K.: A fuzzy logic control based vibration control system for renewable application. In: Bhoi, A., Sherpa, K., Kalam, A., Chae, G.S. (eds) Advances in Greener Energy Technologies. Green Energy and Technology. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-4246-6_38

  24. Davoudi, A., Kong, N., Behjati, H., et al.: Automated system identification and controller tuning for digitally controlled dc–dc converters. IET Power Electron. 5(6), 765–772 (2012). https://doi.org/10.1049/iet-pel.2011.0085

    Article  Google Scholar 

  25. Sarkar, S., Ghosh, S.S.: Comparison of advanced analog controllers for a DC-DC boost converter. In: 2020 IEEE 9th Power India International Conference (PIICON), SONEPAT, India, pp. 1–6 (2020). https://doi.org/10.1109/PIICON49524.2020.9113013

  26. Veerachary, M., Suresh, M.: Digital voltage-mode control of higher order boost converter. In: 2008 Joint International Conference on Power System Technology and IEEE Power India Conference, New Delhi, pp. 1–6 (2008). https://doi.org/10.1109/ICPST.2008.4745157

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saurav, S., Ghosh, A. (2022). Switched Mode Fourth-Order Buck–Boost Converter Using Type II and Type III Controllers in DC Grid Applications. In: Priyadarshi, N., Bhoi, A.K., Bansal, R.C., Kalam, A. (eds) DC—DC Converters for Future Renewable Energy Systems. Energy Systems in Electrical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-4388-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4388-0_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4387-3

  • Online ISBN: 978-981-16-4388-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics